cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163569 Numbers of the form p^3*q^2*r where p, q and r are three distinct primes.

Original entry on oeis.org

360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1500, 1656, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2484, 2600, 2646, 2664, 2904, 2952, 3096, 3132, 3348, 3384, 3400, 3500, 3800, 3816, 3996, 4056, 4116, 4248, 4312, 4392
Offset: 1

Views

Author

Keywords

Comments

There is no constraint on which of the three primes is the largest or smallest.

Examples

			360=2^3*3^2*5. 504=2^3*3^2*7. 1188=2^2*3^3*11.
		

Crossrefs

Subsequence of A137487. - R. J. Mathar, Aug 01 2009

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,3}; Select[Range[5000], f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/3), t1=p^3;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A163569(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//(p**3*q**2)) for p in primerange(integer_nthroot(x,3)[0]+1) for q in primerange(isqrt(x//p**3)+1))+sum(primepi(integer_nthroot(x//p**3,3)[0]) for p in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))-(primepi(integer_nthroot(x,6)[0])<<1)
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025