A163569 Numbers of the form p^3*q^2*r where p, q and r are three distinct primes.
360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1500, 1656, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2484, 2600, 2646, 2664, 2904, 2952, 3096, 3132, 3348, 3384, 3400, 3500, 3800, 3816, 3996, 4056, 4116, 4248, 4312, 4392
Offset: 1
Keywords
Examples
360=2^3*3^2*5. 504=2^3*3^2*7. 1188=2^2*3^3*11.
Crossrefs
Subsequence of A137487. - R. J. Mathar, Aug 01 2009
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,3}; Select[Range[5000], f]
-
PARI
list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/3), t1=p^3;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A163569(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//(p**3*q**2)) for p in primerange(integer_nthroot(x,3)[0]+1) for q in primerange(isqrt(x//p**3)+1))+sum(primepi(integer_nthroot(x//p**3,3)[0]) for p in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))-(primepi(integer_nthroot(x,6)[0])<<1) return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025
Comments