A163590 Odd part of the swinging factorial A056040.
1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195, 9917826435, 583401555, 20419054425, 2268783825
Offset: 0
Keywords
Examples
11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 3^2*7*11 = 2772/4 = 693. From _Anthony Hernandez_, Feb 04 2019: (Start) a(7) = numerator((1*3*5*7)/(2*4*6)) = 35; a(8) = numerator((1*3*5*7)/(2*4*6*8)) = 35; a(9) = numerator((1*3*5*7*9)/(2*4*6*8)) = 315; a(10) = numerator((1*3*5*7*9)/(2*4*6*8*10)) = 63. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
Programs
-
Maple
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))): a := n -> swing(n)/sigma(n);
-
Mathematica
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/ f!]; a[n_] := With[{s = sf[n]}, s/2^IntegerExponent[s, 2]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *) r[n_] := (n - Mod[n - 1, 2])!! /(n - 1 + Mod[n - 1, 2])!! ; Table[r[n], {n, 0, 36}] // Numerator (* Peter Luschny, Mar 01 2020 *)
-
PARI
A163590(n) = { my(a = vector(n+1)); a[1] = 1; for(n = 1, n, a[n+1] = a[n]*n^((-1)^(n+1))*2^valuation(n, 2)); a } \\ Peter Luschny, Sep 29 2019
-
Sage
# uses[A000120] @CachedFunction def swing(n): if n == 0: return 1 return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n A163590 = lambda n: swing(n)/2^A000120(n//2) [A163590(n) for n in (0..31)] # Peter Luschny, Nov 19 2012 # Alternatively:
-
Sage
@cached_function def A163590(n): if n == 0: return 1 return A163590(n - 1) * n^((-1)^(n + 1)) * 2^valuation(n, 2) print([A163590(n) for n in (0..31)]) # Peter Luschny, Sep 29 2019
Formula
a(2*n) = A001790(n).
a(2*n+1) = A001803(n).
a(n) = a(n-1)*n^((-1)^(n+1))*2^valuation(n, 2) for n > 0. - Peter Luschny, Sep 29 2019
Comments