cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001790 Numerators in expansion of 1/sqrt(1-x).

Original entry on oeis.org

1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0

Views

Author

Keywords

Comments

Also numerator of e(n-1,n-1) (see Maple line).
Leading coefficient of normalized Legendre polynomial.
Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x).
Also the numerator of binomial(2*n,n)/2^n. - T. D. Noe, Nov 29 2005
This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - Stephen Crowley, Apr 03 2007
Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - Peter Luschny, Aug 01 2009
It appears that a(n) = A060818(n)*A001147(n)/A000142(n). - James R. Buddenhagen, Jan 20 2010
The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1.
a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - John M. Campbell, Jul 04 2011
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - Leonid Bedratyuk, Nov 17 2012
a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Jean-François Alcover, Mar 21 2013
Constant terms for normalized Legendre polynomials. - Tom Copeland, Feb 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums:
a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A060818(k) = -i.
Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3).
a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2).
Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End)
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017
Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - Peter Luschny, May 20 2021
Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022
a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - Mohammed Yaseen, Sep 19 2023

Examples

			1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
		

References

  • P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.

Crossrefs

Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators).
Cf. A123854 (denominators).
Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf. A163590 (odd part of the swinging factorial).
Cf. A001405.
First column and diagonal 1 of triangle A100258.
Bisection of A036069.
Bisections give A061548 and A063079.
Inverse Moebius transform of A180403/A046161.
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
    [A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
    # From Peter Luschny, Aug 01 2009: (Start)
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))):
    a := n -> swing(2*n)/sigma(2*n); # (End)
    A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
  • Mathematica
    Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
    Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}]   (* John M. Campbell, Jul 04 2011 *)
    Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *)
    Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
    A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
    
  • PARI
    a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
    
  • Sage
    # uses[A000120]
    @CachedFunction
    def swing(n):
        if n == 0: return 1
        return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
    A001790 = lambda n: swing(2*n)/2^A000120(2*n)
    [A001790(n) for n in (0..25)]  # Peter Luschny, Nov 19 2012
    

Formula

a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161).
a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - Benoit Cloitre, Jan 27 2002
a(n) = denominator of (2^n/binomial(2*n,n)). - Artur Jasinski, Nov 26 2011
a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0.
Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - Tom Copeland, Dec 04 2013
From Ralf Steiner, Apr 08 2017: (Start)
a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3).
Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5).
Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5).
a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)).
Sum_{k>=0} a(k)/A123854(k) = sqrt(2).
Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End)
a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - John Lawrence, Jul 17 2020
Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - Antonio Graciá Llorente, Aug 31 2024
a(n) = A001803(n)/(2*n+1). - G. C. Greubel, Sep 23 2024

A001803 Numerators in expansion of (1 - x)^(-3/2).

Original entry on oeis.org

1, 3, 15, 35, 315, 693, 3003, 6435, 109395, 230945, 969969, 2028117, 16900975, 35102025, 145422675, 300540195, 9917826435, 20419054425, 83945001525, 172308161025, 1412926920405, 2893136075115, 11835556670925
Offset: 0

Views

Author

Keywords

Comments

a(n) is the denominator of the integral from 0 to Pi of (sin(x))^(2*n+1). - James R. Buddenhagen, Aug 17 2008
a(n) is the denominator of (2n)!!/(2*n + 1)!! = 2^(2*n)*n!*n!/(2*n + 1)! (see Andersson). - N. J. A. Sloane, Jun 27 2011
a(n) = (2*n + 1)*A001790(n). A046161(n)/a(n) = 1, 2/3, 8/15, 16/35, 128/315, 256/693, ... is binomial transform of Madhava-Gregory-Leibniz series for Pi/4 (i.e., 1 - 1/3 + 1/5 - 1/7 + ... ). See A173384 and A173396. - Paul Curtz, Feb 21 2010
a(n) is the denominator of Integral_{x=-oo..oo} sech(x)^(2*n+2) dx. The corresponding numerator is A101926(n). - Mohammed Yaseen, Jul 25 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:9 at page 51.

Crossrefs

The denominator is given in A046161.
Largest odd divisors of A001800, A002011, A002457, A005430, A033876, A086228.
Bisection of A004731, A004735, A086116.
Second column of triangle A100258.
Cf. A002596 (numerators in expansion of (1-x)^(1/2)).
Cf. A161198 (triangle related to the series expansions of (1-x)^((-1-2*n)/2)).
A163590 is the odd part of the swinging factorial, A001790 at even indices. - Peter Luschny, Aug 01 2009

Programs

  • Julia
    A001803(n) = sum(<<(A001790(k), A005187(n) - A005187(k)) for k in 0:n) # Peter Luschny, Oct 03 2019
    
  • Magma
    A001803:= func< n | Numerator(Binomial(n+2,2)*Catalan(n+1)/4^n) >;
    [A001803(n): n in [0..30]]; // G. C. Greubel, Apr 27 2025
    
  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))):
    a := n -> swing(2*n+1)/sigma(2*n+1); # Peter Luschny, Aug 01 2009
    A001803 := proc(n) (2*n+1)*binomial(2*n,n)/4^n ; numer(%) ; end proc: # R. J. Mathar, Jul 06 2011
    a := n -> denom(Pi*binomial(n, -1/2)): seq(a(n), n = 0..22); # Peter Luschny, Dec 06 2024
  • Mathematica
    Numerator/@CoefficientList[Series[(1-x)^(-3/2),{x,0,25}],x]  (* Harvey P. Dale, Feb 19 2011 *)
    Table[Denominator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)
  • PARI
    a(n) = numerator((2*n+1)*binomial(2*n,n)/(4^n)); \\ Altug Alkan, Sep 06 2018
    
  • SageMath
    def A001803(n): return numerator((n+1)*binomial(2*n+2,n+1)/2^(2*n+1))
    print([A001803(n) for n in range(31)]) # G. C. Greubel, Apr 27 2025

Formula

a(n) = (2*n + 1)! /(n!^2*2^A000120(n)) = (n + 1)*binomial(2*n+2,n+1)/2^(A000120(n)+1). - Ralf Stephan, Mar 10 2004
From Johannes W. Meijer, Jun 08 2009: (Start)
a(n) = numerator( (2*n+1)*binomial(2*n,n)/(4^n) ).
(1 - x)^(-3/2) = Sum_{n>=0} ((2*n+1)*binomial(2*n,n)/4^n)*x^n. (End)
Truncations of rational expressions like those given by the numerator or denominator operators are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n+1)$ / sigma(2*n+1) = A056040(2*n+1) / A060632(2*n+2). Simply said: This sequence gives the odd part of the swinging factorial at odd indices. - Peter Luschny, Aug 01 2009
a(n) = denominator(Pi*binomial(n, -1/2)). - Peter Luschny, Dec 06 2024

A327494 a(n) = numerator(r(n)) where r(n) = Sum_{j=0..n} j!/(2^j*floor(j/2)!)^2.

Original entry on oeis.org

1, 5, 11, 47, 191, 779, 1563, 6287, 50331, 201639, 403341, 1614057, 6456459, 25828839, 51658107, 206638863, 3306228243, 13225022367, 26450056889, 105800458501, 423201880193, 1692808490741, 3385617069661, 13542470306761, 108339763130127, 433359069421483
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Examples

			r(n) = 1, 5/4, 11/8, 47/32, 191/128, 779/512, 1563/1024, 6287/4096, 50331/32768, 201639/131072, ...
		

Crossrefs

Denominators are in A327493.

Programs

Formula

Lim_{n -> oo} r(n) = (4/3)^(3/2) = A118273.

A327495 a(n) = numerator( Sum_{j=0..n} (j!/(2^j*floor(j/2)!)^2)^2 ).

Original entry on oeis.org

1, 17, 69, 1113, 17817, 285297, 1141213, 18260633, 1168681737, 18699007017, 74796032037, 1196736992841, 19147791938817, 306364680039081, 1225458720340365, 19607339566855065, 5019478929156305865, 80311662878468159865, 321246651514020383485, 5139946424277661728785
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Comments

This sequence is a variant of the Landau constants when the normalized central binomial is replaced by the normalized swinging factorial.
(1) A277233(n)/4^A005187(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2 with the normalized central binomial
g(n) = (2*n)! / (2^n*n!)^2 = A001790(n)/A046161(n).
(2) A327495(n)/4^A327492(n) are the rationals considered here. These numbers are defined as H(n) = Sum_{j=0..n} h(j)^2 with the normalized swinging factorial
h(n) = n! / (2^n*floor(n/2)!)^2 = A163590(n)/A327493(n).
(3) In particular, this means that we have the pure integer representations
A277233(n) = Sum_{k=0..n}(A001790(k)*(2^(A005187(n) - A005187(k))))^2;
A327495(n) = Sum_{k=0..n}(A163590(k)*(2^(A327492(n) - A327492(k))))^2.
(4) A163590 is the odd part of the swinging factorial and A001790 is the odd part of the swinging factorial at even indices (see a comment from Aug 01 2009 in A001790). Similarly, A327493(2n)=A046161(2n) and A327493(2n+1) = 2*A046161(2n+1).
(5) A005187 are the partial sums of A001511, the 2-adic valuation of 2n, and A327492 are the partial sums of A327491.

Examples

			r(n) = 1, 17/16, 69/64, 1113/1024, 17817/16384, 285297/262144, 1141213/1048576, 18260633/16777216, ...
		

Crossrefs

Programs

  • Maple
    A327495 := n -> numer(add(j!^2/(2^j*iquo(j,2)!)^4, j=0..n)):
    seq(A327495(n), n=0..19);
  • PARI
    a(n)={ numerator(sum(j=0, n, (j!/(2^j*(j\2)!)^2)^2 )) } \\ Andrew Howroyd, Sep 28 2019

Formula

Denominator(r(n)) = 4^A327492(n) = A327493(n)^2 = A327496(n).
a(n) = Sum_{k=0..n} (A163590(k)*(2^(A327492(n) - A327492(k))))^2.

A338654 T(n, k) = 2^n * Product_{j=1..k} (j/2)^((-1)^(j - 1)). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 4, 2, 2, 8, 4, 4, 6, 16, 8, 8, 12, 6, 32, 16, 16, 24, 12, 30, 64, 32, 32, 48, 24, 60, 20, 128, 64, 64, 96, 48, 120, 40, 140, 256, 128, 128, 192, 96, 240, 80, 280, 70, 512, 256, 256, 384, 192, 480, 160, 560, 140, 630, 1024, 512, 512, 768, 384, 960, 320, 1120, 280, 1260, 252
Offset: 0

Views

Author

Peter Luschny, Apr 22 2021

Keywords

Examples

			Triangle start:
                             [0] 1
                           [1] 2, 1
                          [2] 4, 2, 2
                        [3] 8, 4, 4, 6
                      [4] 16, 8, 8, 12, 6
                  [5] 32, 16, 16, 24, 12, 30
                [6] 64, 32, 32, 48, 24, 60, 20
             [7] 128, 64, 64, 96, 48, 120, 40, 140
         [8] 256, 128, 128, 192, 96, 240, 80, 280, 70
     [9] 512, 256, 256, 384, 192, 480, 160, 560, 140, 630
		

Crossrefs

T(n, 0) = A000079(n), T(n, n) = A056040(n), T(2*n, n) = A253665(n).
Cf. A328002 (row sums), A163590.

Programs

  • Maple
    T := (n, k) -> 2^n*mul((j/2)^((-1)^(j - 1)), j = 1 .. k):
    seq(seq(T(n, k), k=0..n), n=0..9);
    # Recurrence:
    Trow := proc(n) if n = 0 then return [1] fi; Trow(n - 1);
    n^irem(n, 2) * (4/n)^irem(n + 1, 2) * %[n]; [op(2 * %%), %] end:
    seq(print(Trow(n)), n = 0..9);
  • PARI
    t(n, k) = 2^n * prod(j=1, k, ((j/2)^((-1)^(j - 1))))
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print upper 10 rows of the triangle as follows: */
    trianglerows(10) \\ Felix Fröhlich, Apr 22 2021

A240988 Denominators of the (reduced) rationals (((n-1)!!)/(n!! * 2^((1 + (-1)^n)/2)))^((-1)^n), where n is a positive integer.

Original entry on oeis.org

1, 4, 2, 16, 8, 32, 16, 256, 128, 512, 256, 2048, 1024, 4096, 2048, 65536, 32768, 131072, 65536, 524288, 262144, 1048576, 524288, 8388608, 4194304, 16777216, 8388608, 67108864, 33554432, 134217728, 67108864, 4294967296, 2147483648, 8589934592, 4294967296
Offset: 1

Views

Author

James Burling, Aug 06 2014

Keywords

Comments

Numerators for this sequence are the swinging factorial A163590, starting from n = 1.
The terms are all powers of 2 (A000079).
It appears that a(2*n) = 2^A101925(n) and a(2*n+1) = 2^A005187(n). - Robert Israel, Aug 06 2014

Examples

			For n = 1, a(1) = 1.
For n = 2, a(2) = 2 * 2 = 4.
For n = 6, a(6) = 2 * 2 * 4 * 2 = 32.
		

Crossrefs

Cf. A163590 (numerators).

Programs

  • Maple
    f:= n -> denom(((doublefactorial(n-1)) / (doublefactorial(n)*2^((1+(-1)^n)/2)))^((-1)^n)):
    seq(f(n), n=1..100); # Robert Israel, Aug 06 2014
  • PARI
    df(n) = prod(i=0, floor((n-1)/2), n-2*i) \\ Double factorial (n!!)
    a(n) = denominator(((df(n-1)) / (df(n)*2^((1+(-1)^n)/2)))^((-1)^n))
    vector(50, n, a(n)) \\ Colin Barker, Aug 06 2014

Formula

a(n) = denominator((((n-1)!!)/(n!! * 2^((1 + (-1)^n)/2)))^((-1)^n)).
a(n) = denominator(g(1, n)) where g(m, n) = m if m = n; m/(2 * g(m + 1, n)) otherwise.

Extensions

More terms from Colin Barker, Aug 06 2014
Showing 1-6 of 6 results.