cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163613 a(n) = ((1 + 3*sqrt(2))*(2 + sqrt(2))^n + (1 - 3*sqrt(2))*(2 - sqrt(2))^n)/2.

Original entry on oeis.org

1, 8, 30, 104, 356, 1216, 4152, 14176, 48400, 165248, 564192, 1926272, 6576704, 22454272, 76663680, 261746176, 893657344, 3051137024, 10417233408, 35566659584, 121432171520, 414595366912, 1415517124608, 4832877764608
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009

Keywords

Comments

Binomial transform of A048694. Second binomial transform of A163864. Inverse binomial transform of A163614.

Crossrefs

Cf. A048694, A163864 (1, 6, 2, 12, 4, 24, ...), A163614.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(2+r)^n+(1-3*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
    
  • Mathematica
    LinearRecurrence[{4, -2}, {1, 8}, 50] (* G. C. Greubel, Jul 30 2017 *)
  • PARI
    x='x+O('x^50); Vec((1+4*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jul 30 2017

Formula

a(n) = 4*a(n-1) - 2*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
G.f.: (1+4*x)/(1-4*x+2*x^2).
E.g.f.: exp(2*x)*( cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 30 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 06 2009