cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A328104 a(n) = A163617(A110240(n)) = A110240(n) OR 2*A110240(n).

Original entry on oeis.org

3, 15, 59, 255, 947, 4095, 15131, 65407, 242627, 1048271, 3874811, 16743551, 62119411, 268369791, 991927259, 4286447359, 15902689155, 68701773199, 253935222715, 1097330432511, 4071076396851, 17587676696575, 65007550988187, 280916526002175, 1042196361379523, 4502448248917967, 16641933085980923, 71914639532751871
Offset: 0

Views

Author

Antti Karttunen, Oct 04 2019

Keywords

Crossrefs

Cf. A003986, A051023, A110240, A269160, A163617, A328105 (binary weight of terms).
Cf. also A327971, A327972, A327973, A327976, A328103 for other such combinations.

Programs

Formula

a(n) = A163617(A110240(n)) = A110240(n) OR 2*A110240(n).
a(n) = (1/2) * (A110240(n) XOR A110240(1+n)).

A269174 Formula for Wolfram's Rule 124 cellular automaton: a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)).

Original entry on oeis.org

0, 3, 6, 7, 12, 15, 14, 11, 24, 27, 30, 31, 28, 31, 22, 19, 48, 51, 54, 55, 60, 63, 62, 59, 56, 59, 62, 63, 44, 47, 38, 35, 96, 99, 102, 103, 108, 111, 110, 107, 120, 123, 126, 127, 124, 127, 118, 115, 112, 115, 118, 119, 124, 127, 126, 123, 88, 91, 94, 95, 76, 79, 70, 67, 192, 195, 198, 199, 204, 207, 206, 203, 216
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2016

Keywords

Crossrefs

Cf. A269175.
Cf. A269176 (numbers not present in this sequence).
Cf. A269177 (same sequence sorted into ascending order, duplicates removed).
Cf. A269178 (numbers that occur only once).
Cf. A267357 (iterates from 1 onward).

Programs

Formula

a(n) = A163617(n) AND A269173(n).
a(n) = A163617(n) AND (A048724(n) OR A048725(n)).
a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)).
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(A161903(A057889(n))). [Rule 124 is the mirror image of rule 110.]
G.f.: (-3*x^3 - 2*x^2 - 3*x)/(x^4 - 1) + Sum_{k>=1}((2^(k + 1)*x^(2^k) - 2^(k + 1)*x^(14*2^(k - 2)))/((x^(2^(k + 2)) - 1)*(x - 1))). - Miles Wilson, Jan 25 2025

A269161 Formula for Wolfram's Rule 86 cellular automaton: a(n) = 4n XOR (2n OR n).

Original entry on oeis.org

0, 7, 14, 11, 28, 27, 22, 19, 56, 63, 54, 51, 44, 43, 38, 35, 112, 119, 126, 123, 108, 107, 102, 99, 88, 95, 86, 83, 76, 75, 70, 67, 224, 231, 238, 235, 252, 251, 246, 243, 216, 223, 214, 211, 204, 203, 198, 195, 176, 183, 190, 187, 172, 171, 166, 163, 152, 159, 150, 147, 140, 139, 134, 131, 448, 455, 462, 459
Offset: 0

Views

Author

Antti Karttunen, Feb 20 2016

Keywords

Comments

The sequence is injective: no value occurs more than once.
Fibbinary numbers (A003714) give all integers n>=0 for which a(n) = A048727(n) and for which a(n) = A269160(n).

Crossrefs

Cf. A265281 (iterates starting from 1).
Cf. also A048727, A269160.

Programs

Formula

a(n) = 4n XOR (2n OR n) = A003987(4*n, A003986(2*n, n)).
a(n) = 4*n XOR A163617(n).
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(A269160(A057889(n))). [Rule 86 is the mirror image of rule 30.]

A178891 a(n) = n OR 4n, where OR is bitwise OR.

Original entry on oeis.org

0, 5, 10, 15, 20, 21, 30, 31, 40, 45, 42, 47, 60, 61, 62, 63, 80, 85, 90, 95, 84, 85, 94, 95, 120, 125, 122, 127, 124, 125, 126, 127, 160, 165, 170, 175, 180, 181, 190, 191, 168, 173, 170, 175, 188, 189, 190, 191, 240, 245, 250, 255, 244, 245, 254, 255, 248, 253
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Comments

Perhaps this is a rearrangement of A115772?

Crossrefs

Programs

  • Maple
    read("transforms") ; for n from 0 to 120 do printf("%d,", ORnos(n,4*n) ) ; end do: # R. J. Mathar, Jun 26 2010
  • Mathematica
    f[n_] := BitOr[n, 4n]; Array[f, 58, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, Jun 26 2010

A178894 a(n) = n OR 7n, where OR is bitwise OR.

Original entry on oeis.org

0, 7, 14, 23, 28, 39, 46, 55, 56, 63, 78, 79, 92, 95, 110, 111, 112, 119, 126, 151, 156, 151, 158, 183, 184, 191, 190, 191, 220, 223, 222, 223, 224, 231, 238, 247, 252, 295, 302, 311, 312, 319, 302, 303, 316, 319, 366, 367, 368, 375, 382, 375, 380, 375, 382
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Comments

From Robert Israel, Dec 27 2016: (Start)
7*n <= a(n) < 8*n.
a(n) = 7*n if and only if n is in A048715.
It appears that a(n) = 8*n-1 if and only if n = (4*8^j+2*8^k+3)/7 for some j and k. (End)

Crossrefs

Programs

  • Maple
    seq(Bits:-Or(n,7*n), n=0..100); # Robert Israel, Dec 27 2016
  • Mathematica
    f[n_] := BitOr[n, 7n]; Array[f, 55, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from Robert G. Wilson v, Jun 28 2010

A178895 a(n) = n OR 8n, where OR is bitwise OR.

Original entry on oeis.org

0, 9, 18, 27, 36, 45, 54, 63, 72, 73, 90, 91, 108, 109, 126, 127, 144, 153, 146, 155, 180, 189, 182, 191, 216, 217, 218, 219, 252, 253, 254, 255, 288, 297, 306, 315, 292, 301, 310, 319, 360, 361, 378, 379, 364, 365, 382, 383, 432, 441, 434, 443, 436, 445, 438
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Comments

Perhaps this is a rearrangement of A114386?
No, e.g., a(513) = 4617 is not in A114386. Moreover, this sequence is not injective, as a(65) = a(73) = 585. - Robert Israel, Jan 31 2021

Crossrefs

Programs

  • Maple
    read("transforms"); for n from 0 to 120 do printf("%d,", ORnos(n,8*n) ) ; end do: # R. J. Mathar, Jun 26 2010
  • Mathematica
    f[n_] := BitOr[n, 8n]; Array[f, 55, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, Jun 26 2010

A178890 a(n) = n OR 3n, where OR is bitwise OR.

Original entry on oeis.org

0, 3, 6, 11, 12, 15, 22, 23, 24, 27, 30, 43, 44, 47, 46, 47, 48, 51, 54, 59, 60, 63, 86, 87, 88, 91, 94, 91, 92, 95, 94, 95, 96, 99, 102, 107, 108, 111, 118, 119, 120, 123, 126, 171, 172, 175, 174, 175, 176, 179, 182, 187, 188, 191, 182, 183, 184, 187, 190, 187, 188
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := BitOr[n, 3n]; Array[f, 61, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from Robert G. Wilson v, Jun 28 2010

A178892 a(n) = n OR 5n, where OR is bitwise OR.

Original entry on oeis.org

0, 5, 10, 15, 20, 29, 30, 39, 40, 45, 58, 63, 60, 77, 78, 79, 80, 85, 90, 95, 116, 125, 126, 119, 120, 125, 154, 159, 156, 157, 158, 159, 160, 165, 170, 175, 180, 189, 190, 231, 232, 237, 250, 255, 252, 237, 238, 239, 240, 245, 250, 255, 308, 317, 318, 311, 312
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := BitOr[n, 5n]; Array[f, 57, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from Robert G. Wilson v, Jun 28 2010

A178893 a(n) = n OR 6n, where OR is bitwise OR.

Original entry on oeis.org

0, 7, 14, 19, 28, 31, 38, 47, 56, 63, 62, 75, 76, 79, 94, 95, 112, 119, 126, 115, 124, 127, 150, 159, 152, 159, 158, 187, 188, 191, 190, 191, 224, 231, 238, 243, 252, 255, 230, 239, 248, 255, 254, 299, 300, 303, 318, 319, 304, 311, 318, 307, 316, 319, 374, 383
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := BitOr[n, 6n]; Array[f, 56, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from Robert G. Wilson v, Jun 28 2010

A178896 a(n) = n OR 9n, where OR is bitwise OR.

Original entry on oeis.org

0, 9, 18, 27, 36, 45, 54, 63, 72, 89, 90, 107, 108, 125, 126, 143, 144, 153, 178, 187, 180, 189, 214, 223, 216, 249, 250, 251, 252, 285, 286, 287, 288, 297, 306, 315, 356, 365, 374, 383, 360, 377, 378, 427, 428, 445, 446, 431, 432, 441, 498, 507, 500, 509, 502
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := BitOr[n, 9n]; Array[f, 55, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from Robert G. Wilson v, Jun 28 2010
Showing 1-10 of 15 results. Next