cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163619 Let q(p) be the smallest prime greater than the prime p. A positive integer n is included in this sequence if n+1 is divisible by q(p) for each prime p dividing n.

Original entry on oeis.org

2, 8, 9, 20, 32, 98, 125, 128, 169, 464, 512, 729, 961, 1280, 2048, 2108, 5252, 8000, 8192, 9728, 15872, 16807, 18176, 22385, 32768, 36992, 50000, 53792, 59049, 78821, 81920, 97556, 98125, 100352, 124659, 131072, 195129, 219488, 223040, 307328
Offset: 1

Views

Author

Leroy Quet, Aug 01 2009

Keywords

Comments

All terms of this sequence are in sequence A073606.
From Robert Israel, Dec 01 2024: (Start)
If k is a term, then so is k^j for all odd j.
If A226295(k) is even, then prime(k)^(A226295(k)/2) is a term. (End)

Examples

			20 is divisible by the primes 2 and 5. q(2) = 3, and q(5)=7. 20+1 = 21 is divisible by both 3 and 7, so 20 is in this sequence.
		

Crossrefs

Programs

  • Maple
    filter:= n ->
      andmap(p -> n+1 mod nextprime(p) = 0, numtheory:-factorset(n)):
    select(filter, [$2..4*10^5]); # Robert Israel, Dec 01 2024
  • Mathematica
    depQ[n_]:=With[{c=NextPrime[FactorInteger[n][[;;,1]]]},AllTrue[(n+1)/c,IntegerQ]]; Select[Range[ 2,350000],depQ] (* Harvey P. Dale, Jun 10 2023 *)

Extensions

More terms from Sean A. Irvine, Oct 04 2009