A163619 Let q(p) be the smallest prime greater than the prime p. A positive integer n is included in this sequence if n+1 is divisible by q(p) for each prime p dividing n.
2, 8, 9, 20, 32, 98, 125, 128, 169, 464, 512, 729, 961, 1280, 2048, 2108, 5252, 8000, 8192, 9728, 15872, 16807, 18176, 22385, 32768, 36992, 50000, 53792, 59049, 78821, 81920, 97556, 98125, 100352, 124659, 131072, 195129, 219488, 223040, 307328
Offset: 1
Keywords
Examples
20 is divisible by the primes 2 and 5. q(2) = 3, and q(5)=7. 20+1 = 21 is divisible by both 3 and 7, so 20 is in this sequence.
Programs
-
Maple
filter:= n -> andmap(p -> n+1 mod nextprime(p) = 0, numtheory:-factorset(n)): select(filter, [$2..4*10^5]); # Robert Israel, Dec 01 2024
-
Mathematica
depQ[n_]:=With[{c=NextPrime[FactorInteger[n][[;;,1]]]},AllTrue[(n+1)/c,IntegerQ]]; Select[Range[ 2,350000],depQ] (* Harvey P. Dale, Jun 10 2023 *)
Extensions
More terms from Sean A. Irvine, Oct 04 2009
Comments