A163636 The sum of all odd numbers from 2n-1 up to the n-th odd nonprime.
1, 24, 60, 112, 153, 171, 253, 275, 336, 448, 525, 555, 640, 672, 828, 864, 969, 1155, 1197, 1320, 1449, 1495, 1632, 1680, 1728, 1875, 2133, 2407, 2580, 2640, 2700, 2760, 2820, 2880, 3069, 3264, 3328, 3672, 3740, 3808, 3876, 4248, 4320, 4551, 4625, 4864
Offset: 1
Examples
a(1)=1. a(2)=3+5+7+9=24. a(3)=5+7+9+11+13+15=60.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A014076 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: A163636 := proc(n) local onpr; onpr := A014076(n) ; (onpr+2*n-1)*(onpr-2*n+3)/4; end: seq(A163636(n),n=1..80) ; # R. J. Mathar, Aug 08 2009
-
Mathematica
A014076 := Select[Range[1, 10299, 2], PrimeOmega[#] != 1 &]; Table[(A014076[[n]] + 2*n - 1)*(A014076[[n]] - 2*n + 3)/4, {n, 1, 50}] (* G. C. Greubel, Jul 31 2017 *) Module[{nn=201,onp},onp=Select[Range[1,nn,2],!PrimeQ[#]&];Table[Total[ Range[ 2n-1,onp[[n]],2]],{n,Length[onp]}]] (* Harvey P. Dale, Jul 03 2020 *)
-
Python
from sympy import primepi def A163636(n): if n == 1: return 1 m, k, n2 = n-1, primepi(n) + n - 1 + (n>>1), (n<<1)-1 while m != k: m, k = k, primepi(k) + n - 1 + (k>>1) return (lambda x: (x+n2)*(x-n2+2)>>2)(m) # Chai Wah Wu, Jul 31 2024
Formula
Extensions
Edited and a(21) corrected by R. J. Mathar, Aug 08 2009