A163649 Triangle interpolating between (-1)^n (A033999) and A056040(n), read by rows.
1, -1, 1, 1, -2, 2, -1, 3, -6, 6, 1, -4, 12, -24, 6, -1, 5, -20, 60, -30, 30, 1, -6, 30, -120, 90, -180, 20, -1, 7, -42, 210, -210, 630, -140, 140, 1, -8, 56, -336, 420, -1680, 560, -1120, 70
Offset: 0
Examples
1 -1, 1 1, -2, 2 -1, 3, -6, 6 1, -4, 12, -24, 6 -1, 5, -20, 60, -30, 30 1, -6, 30, -120, 90, -180, 20 -1, 7, -42, 210, -210, 630, -140, 140 1, -8, 56, -336, 420, -1680, 560, -1120, 70
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Luschny, The lost Catalan numbers.
Crossrefs
Programs
-
Maple
a := proc(n,k) (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)! end: seq(print(seq(a(n,k),k=0..n)),n=0..8);
-
Mathematica
t[n_, k_] := (-1)^(n - k)*Floor[k/2]!^(-2)*n!/(n - k)!; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
-
PARI
for(n=0,10, for(k=0,n, print1((-1)^(n -k)*( (floor(k/2))! )^(-2)*(n!/(n - k)!), ", "))) \\ G. C. Greubel, Aug 01 2017
Formula
T(n,k) = (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)!.
E.g.f.: egf(x,y) = exp(-x)*BesselI(0,2*x*y)*(1+x*y).
Comments