cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163650 Subswing - the inverse binomial transform of the swinging factorial (A056040).

Original entry on oeis.org

1, 0, 1, 2, -9, 44, -165, 594, -2037, 6824, -22437, 72830, -234047, 746316, -2364947, 7455798, -23405085, 73207728, -228275949, 709906518, -2202557691, 6819616020, -21076580511, 65032888998, -200369138571, 616531573224, -1894784517675, 5816886949874
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Comments

Analog to the subfactorial A000166.

Crossrefs

Row sums of A163649. Cf. A056040, A000166.

Programs

  • Maple
    a := proc(n) local k: add((-1)^(n-k)*binomial(n,k)*(k!/iquo(k,2)!^2), k=0..n) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n, (-1)^(n-k)*binomial(n,k)*(k!/((k\2)!)^2)), ", ")) \\ G. C. Greubel, Aug 01 2017

Formula

E.g.f.: exp(-x)*BesselI(0,2*x)*(1+x). - Peter Luschny, Aug 26 2012
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)*(k!/(floor(k/2)!)^2). - G. C. Greubel, Aug 01 2017
a(n) ~ -(-1)^n * sqrt(n) * 3^(n - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Oct 31 2017
D-finite with recurrence n*a(n) +5*(n-1)*a(n-1) +(n-4)*a(n-2) +(-13*n+23)*a(n-3) +6*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 04 2023

A194586 Triangle read by rows, T(n,k) the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*(k mod 2)*q^k.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 3, 0, 6, 0, 4, 0, 24, 0, 0, 5, 0, 60, 0, 30, 0, 6, 0, 120, 0, 180, 0, 0, 7, 0, 210, 0, 630, 0, 140, 0, 8, 0, 336, 0, 1680, 0, 1120, 0, 0, 9, 0, 504, 0, 3780, 0, 5040, 0, 630, 0, 10, 0, 720, 0, 7560, 0, 16800, 0, 6300, 0, 0, 11, 0, 990, 0, 13860, 0, 46200, 0, 34650, 0, 2772, 0, 12
Offset: 0

Views

Author

Peter Luschny, Aug 29 2011

Keywords

Comments

Substituting q^k -> 1/(floor(k/2)+1) in the polynomials gives the complementary Motzkin numbers A005717. (See A089627 for the Motzkin numbers and A163649 for the extended Motzkin numbers.)

Examples

			               0
              0, 1
            0, 2, 0
           0, 3, 0, 6
         0, 4, 0, 24, 0
       0, 5, 0, 60, 0, 30
    0, 6, 0, 120, 0, 180, 0
  0, 7, 0, 210, 0, 630, 0, 140
                0
                q
               2 q
            3 q + 6 q^3
           4 q + 24 q^3
       5 q + 60 q^3  + 30 q^5
      6 q + 120 q^3  + 180 q^5
  7 q + 210 q^3  + 630 q^5  + 140 q^7
		

Crossrefs

Row sums are A109188. Cf. A056040, A005717, A163649, A089627.

Programs

  • Maple
    A194586 := proc(n,k) local j, swing; swing := n -> n!/iquo(n,2)!^2:
    add(binomial(n,j)*swing(j)*q^j*(j mod 2),j=0..n); coeff(%,q,k) end:
    seq(print(seq(A194586(n,k),k=0..n)),n=0..8);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2;
    row[n_] := Sum[Binomial[n, j] sf[j] q^j Mod[j, 2], {j, 0, n}] // CoefficientList[#, q]& // PadRight[#, n+1]&;
    Table[row[n], {n, 0, 12}] (* Jean-François Alcover, Jun 26 2019 *)

Formula

egf(x,y) = x*y*exp(x)*BesselI(0,2*x*y).

A163945 Triangle interpolating between (-1)^n (A033999) and the swinging factorial function (A056040) restricted to odd indices (2n+1)$ (A002457), read by rows.

Original entry on oeis.org

1, -1, 6, 1, -12, 30, -1, 18, -90, 140, 1, -24, 180, -560, 630, -1, 30, -300, 1400, -3150, 2772, 1, -36, 450, -2800, 9450, -16632, 12012, -1, 42, -630, 4900, -22050, 58212, -84084, 51480, 1, -48, 840, -7840, 44100, -155232, 336336, -411840, 218790
Offset: 0

Views

Author

Peter Luschny, Aug 07 2009

Keywords

Examples

			Triangle begins:
   1;
  -1,   6;
   1, -12,   30;
  -1,  18,  -90,   140;
   1, -24,  180,  -560,   630;
  -1,  30, -300,  1400, -3150,   2772;
   1, -36,  450, -2800,  9450, -16632, 12012;
		

Crossrefs

Row sums are the inverse binomial transform of the beta numbers (A163872).

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n, k) (-1)^(n-k)*binomial(n,k)*swing(2*k+1) end:
    seq(print(seq(a(n,k),k=0..n)),n=0..8);
  • Mathematica
    T[n_,k_] := ((-1)^(Mod[k,2]+n)*((2*k+1)!/(k!)^2)*Binomial[n,n-k]);
    Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)

Formula

For n >= 0, k >= 0, T(n, k) = (-1)^(n-k) binomial(n,k) (2*k+1)$ where i$ denotes the swinging factorial of i (A056040).
Conjectural g.f.: sqrt(1 + t)/(1 + (1 - 4*x)*t)^(3/2) = 1 + (-1 + 6*x)*t + (1 - 12*x + 30*x^2)*t^2 + .... - Peter Bala, Nov 10 2013
T(n, k) = ((-1)^(k mod 2) + n)*((2*k + 1)!/(k!)^2)*binomial(n, n - k). - Detlef Meya, Oct 07 2023
Showing 1-3 of 3 results.