cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163733 Number of n X 2 binary arrays with all 1's connected, all corners 1, and no 1 having more than two 1's adjacent.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
Offset: 1

Views

Author

R. H. Hardin, Aug 03 2009

Keywords

Comments

Same recurrence for A163695.
Same recurrence for A163714.
Appears to coincide with diagonal sums of A072405. - Paul Barry, Aug 10 2009
From Gary W. Adamson, Sep 15 2016: (Start)
Let the sequence prefaced with a 1: (1, 1, 1, 2, 2, 4, 6, ...) equate to r(x). Then (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) = the Fibonacci sequence, (1, 1, 2, 3, 5, ...). Let M = the following production matrix:
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
2, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
4, 2, 1, 0, 0, ...
6, 2, 1, 1, 0, ...
...
Limit of the matrix power M^k as k->infinity results in a single column vector equal to the Fibonacci sequence. (End)
Apparently a(n) = A128588(n-2) for n > 3. - Georg Fischer, Oct 14 2018

Examples

			All solutions for n=8:
   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1
   0 1   1 0   1 0   1 0   1 0   1 0   0 1   0 1   0 1   0 1
   0 1   1 0   1 0   1 0   1 1   1 0   0 1   0 1   1 1   0 1
   0 1   1 0   1 0   1 1   0 1   1 0   0 1   0 1   1 0   1 1
   0 1   1 0   1 1   0 1   0 1   1 0   0 1   1 1   1 0   1 0
   0 1   1 0   0 1   0 1   0 1   1 1   1 1   1 0   1 0   1 0
   0 1   1 0   0 1   0 1   0 1   0 1   1 0   1 0   1 0   1 0
   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1
------
   1 1   1 1   1 1   1 1   1 1   1 1
   0 1   0 1   0 1   1 0   1 0   1 0
   1 1   1 1   0 1   1 0   1 1   1 1
   1 0   1 0   1 1   1 1   0 1   0 1
   1 1   1 0   1 0   0 1   0 1   1 1
   0 1   1 1   1 1   1 1   1 1   1 0
   0 1   0 1   0 1   1 0   1 0   1 0
   1 1   1 1   1 1   1 1   1 1   1 1
		

Crossrefs

Programs

Formula

Empirical: a(n) = a(n-1) + a(n-2) for n >= 5.
G.f.: (1-x^3)/(1-x-x^2) (conjecture). - Paul Barry, Aug 10 2009
a(n) = round(phi^(k-1)) - round(phi^(k-1)/sqrt(5)), phi = (1 + sqrt(5))/2 (conjecture). - Federico Provvedi, Mar 26 2013
G.f.: 1 + 2*x - x*Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (conjecture), (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: If prefaced with a 1, (1, 1, 1, 2, 2, 4, ...): (1 - x^2 - x^4)/(1 - x - x^2); where the modified sequence satisfies A(x)/A(x^2), A(x) is the Fibonacci sequence. - Gary W. Adamson, Sep 15 2016