A163733 Number of n X 2 binary arrays with all 1's connected, all corners 1, and no 1 having more than two 1's adjacent.
1, 1, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
Offset: 1
Keywords
Examples
All solutions for n=8: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ------ 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
Links
- R. H. Hardin, Table of n, a(n) for n=1..100
Crossrefs
Programs
-
Mathematica
Join[{1, 1}, Table[2*Fibonacci[n], {n, 70}]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *) Table[Round[GoldenRatio^(k-1)] - Round[GoldenRatio^(k-1)/Sqrt[5]], {k, 1, 70}] (* Federico Provvedi, Mar 26 2013 *)
Formula
Empirical: a(n) = a(n-1) + a(n-2) for n >= 5.
G.f.: (1-x^3)/(1-x-x^2) (conjecture). - Paul Barry, Aug 10 2009
a(n) = round(phi^(k-1)) - round(phi^(k-1)/sqrt(5)), phi = (1 + sqrt(5))/2 (conjecture). - Federico Provvedi, Mar 26 2013
G.f.: 1 + 2*x - x*Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (conjecture), (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: If prefaced with a 1, (1, 1, 1, 2, 2, 4, ...): (1 - x^2 - x^4)/(1 - x - x^2); where the modified sequence satisfies A(x)/A(x^2), A(x) is the Fibonacci sequence. - Gary W. Adamson, Sep 15 2016
Comments