cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163772 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial inverse. Triangle read by rows. For n >= 0, k >= 0.

Original entry on oeis.org

1, 5, 6, 19, 24, 30, 67, 86, 110, 140, 227, 294, 380, 490, 630, 751, 978, 1272, 1652, 2142, 2772, 2445, 3196, 4174, 5446, 7098, 9240, 12012, 7869, 10314, 13510, 17684, 23130, 30228, 39468, 51480
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Examples

			Triangle begins:
     1;
     5,    6;
    19,   24,   30;
    67,   86,  110,  140;
   227,  294,  380,  490,  630;
   751,  978, 1272, 1652, 2142, 2772;
  2445, 3196, 4174, 5446, 7098, 9240, 12012;
		

Crossrefs

Programs

  • Maple
    For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
    a := n -> DiffTria(k->swing(2*k+1),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[ (-1)^(n-i)*Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).