A163775 Row sums of triangle A163772.
1, 11, 73, 403, 2021, 9567, 43611, 193683, 844213, 3629083, 15437951, 65143503, 273148279, 1139548469, 4734740493, 19606960755, 80969809797, 333601494651
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
Crossrefs
Cf. A163772.
Programs
-
Maple
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(2*i+1),i=k..n),k=0..n) end:
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)* Binomial[n - k, n - i]*sf[2*i + 1], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 04 2017 *)
Formula
a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).
Comments