cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163771 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial inverse. Same as interpolating the central trinomial coefficients (A002426) with the central binomial coefficients (A000984).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 14, 20, 19, 26, 36, 50, 70, 51, 70, 96, 132, 182, 252, 141, 192, 262, 358, 490, 672, 924, 393, 534, 726, 988, 1346, 1836, 2508, 3432, 1107, 1500, 2034, 2760, 3748, 5094, 6930, 9438, 12870
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Comments

Triangle read by rows. For n >= 0, k >= 0 let T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040).
This is also the square array of central binomial coefficients A000984 in column 0 and higher (first: A051924, second, etc.) differences in subsequent columns, read by antidiagonals. - M. F. Hasler, Nov 15 2019

Examples

			Triangle begins
    1;
    1,   2;
    3,   4,   6;
    7,  10,  14,  20;
   19,  26,  36,  50,  70;
   51,  70,  96, 132, 182, 252;
  141, 192, 262, 358, 490, 672, 924;
From _M. F. Hasler_, Nov 15 2019: (Start)
The square array having central binomial coefficients A000984 in column 0 and higher differences in subsequent columns (col. 1 = A051924) starts:
     1   1    3    7    19    51 ...
     2   4   10   26    70   192 ...
     6  14   36   96   262   726 ...
    20  50  132  358   988  2760 ...
    70 182  490 1346  3748 10540 ...
   252 672 1836 5094 14288 40404 ...
  (...)
Read by falling antidiagonals this yields the same sequence. (End)
		

Crossrefs

Programs

  • Maple
    For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
    a := n -> DiffTria(k->swing(2*k),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

A264766 Irregular symmetric triangle of coefficients T(n,k) of the polynomials p(n,x) = Sum_{k=0..n} binomial(n+1,k)*(1+x)^(2*k)*(-x)^(n-k) for 0 <= k <= 2*n.

Original entry on oeis.org

1, 2, 3, 2, 3, 9, 13, 9, 3, 4, 18, 40, 51, 40, 18, 4, 5, 30, 90, 165, 201, 165, 90, 30, 5, 6, 45, 170, 405, 666, 783, 666, 405, 170, 45, 6, 7, 63, 287, 840, 1736, 2646, 3039, 2646, 1736, 840, 287, 63, 7, 8, 84, 448, 1554, 3864, 7224, 10424, 11763, 10424, 7224, 3864, 1554, 448, 84, 8, 9, 108, 660, 2646, 7686, 17010, 29520, 40851, 45481, 40851, 29520, 17010, 7686, 2646, 660, 108, 9, 10
Offset: 0

Views

Author

Werner Schulte, Nov 23 2015

Keywords

Examples

			The irregular triangle T(n,k) begins:
n\k:  0   1    2     3     4     5      6      7      8     9    10  11  12
  0:  1
  1:  2   3    2
  2:  3   9   13     9     3
  3:  4  18   40    51    40    18      4
  4:  5  30   90   165   201   165     90     30      5
  5:  6  45  170   405   666   783    666    405    170    45     6
  6:  7  63  287   840  1736  2646   3039   2646   1736   840   287  63   7
  etc.
The polynomial corresponding to row 2 is p(2,x) = 3 + 9*x + 13*x^2 + 9*x^3 + 3*x^4.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j*Binomial[n + 1, j + 1]*Binomial[2*n - 2*j, k - j], {j, 0, n - Abs[k - n]}]; Table[T[n, k], {n,0,10}, {k,0,2*n}] // Flatten (* G. C. Greubel, Aug 12 2017 *)
  • PARI
    T(n,k) = sum(j=0, n-abs(k-n), (-1)^j*binomial(n+1,j+1)*binomial(2*n-2*j,k-j));
    tabf(nn) = for (n=0, nn, for (k=0, 2*n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, Nov 24 2015

Formula

T(n,k) = Sum_{j=0..n-d} (-1)^j*binomial(n+1,j+1)*binomial(2*n-2*j,k-j) if d = 0 or better d = abs(k-n), and 0 <= k <= 2*n.
Recurrence: T(n,0) = n+1, and T(n,k) = 0 for k < 0 or k > 2*n, and T(n+1,k) = T(n,k-2) + T(n,k-1) + T(n,k) + binomial(2*n+2,k) for k > 0 and n >= 0.
T(n,k) = T(n,2*n-k) for 0 <= k <= 2*n.
p(n,x) = Sum_{k=0..2*n} T(n,k)*x^k = Sum_{k=0..n} (1+x)^(2*k)*(1+x+x^2)^(n-k) = Sum_{k=0..n} binomial(n+1,k)*(1+x+x^2)^k*x^(n-k) for n >= 0.
Recurrence: p(0,x) = 1, and p(n+1,x) = (1+x+x^2)*p(n,x)+(1+x)^(2*n+2), n >= 0.
T(n,n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n+1,j)*binomial(2*j,j) = A000984(n+1)-A002426(n+1) for n >= 0 (see also A163774).
Sum_{n>=0} T(n,n)*x^(n+1) = 1/sqrt(1-4*x) - 1/sqrt(1-2*x-3*x^2) for abs(x) < 1/4.
T(n,n-1) = binomial(2*n+2,n) - A027907(n+1,n) for n > 0.
T(n+1,n)/(n+2) = A000108(n+2) - A001006(n+1) for n >= 0 (see also A058987).
Row sums: p(n,1) = A005061(n+1) for n >= 0.
Alternating row sums: p(n,-1) = 1 for n >= 0.
p(n,-2) = Sum_{k=0..2*n} T(n,k)*(-2)^k = A003462(n+1) for n >= 0.
T(n,k) = Sum_{j=0..k} (-1)^j*A260056(n,j)*binomial(2*n-j,k-j) for 0 <= k <= 2*n.
A260056(n,k) = Sum_{j=0..k} (-1)^j*T(n,j)*binomial(2*n-j,k-j) for 0 <= k <= 2*n.
p(n,-1-x) = Sum{k=0..2*n} A260056(n,k)*x^(2*n-k) for n >= 0.
p(n,-x/(1+x))*(1+x)^(2*n) = Sum_{k=0..2*n} A260056(n,k)*x^k for n >= 0.
Sum_{n>=0} p(n,x)*t^n = 1/((1-t*(1+x)^2)*(1-t*(1+x+x^2))).
p(n,x)*x = (1+x)^(2*n+2) - (1+x+x^2)^(n+1), n >= 0.
T(n,k) = binomial(2*n+2,k+1) - A027907(n+1,k+1) for 0 <= k <= 2*n.
Showing 1-2 of 2 results.