A163827 a(n) = 6n^3 + 1, solution z in Diophantine equation x^3 + y^3 = z^3 - 2. It may be considered a Fermat near miss by 2.
7, 49, 163, 385, 751, 1297, 2059, 3073, 4375, 6001, 7987, 10369, 13183, 16465, 20251, 24577, 29479, 34993, 41155, 48001, 55567, 63889, 73003, 82945, 93751, 105457, 118099, 131713, 146335, 162001, 178747, 196609, 215623, 235825, 257251, 279937
Offset: 1
Examples
For n=1, a(1)=7 and 7^3 - 2 (=341) = 5^3 + 6^3. For n=2, a(2)=49 and 49^3 - 2 (=117647) = 24^3 + 47^3.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Programs
-
Magma
[6*n^3+1 : n in [1..50]]; // Wesley Ivan Hurt, Jan 09 2017
-
Maple
A163827:=n->6*n^3+1: seq(A163827(n), n=1..50); # Wesley Ivan Hurt, Jan 09 2017
-
Mathematica
6*Range[40]^3+1 (* or *) LinearRecurrence[{4,-6,4,-1},{7,49,163,385},40] (* Harvey P. Dale, Dec 12 2011 *)
-
PARI
a(n)=6*n^3+1 \\ Charles R Greathouse IV, Nov 29 2014
Formula
a(n) = 6n^3+1.
a(1)=7, a(2)=49, a(3)=163, a(4)=385, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). [Harvey P. Dale, Dec 12 2011]
G.f.: (-x^3+9*x^2+21*x+7)/(x-1)^4. [Harvey P. Dale, Dec 12 2011]
Comments