cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163836 Composites whose largest prime factor is equal to the sum of all the other prime factors (with repetition).

Original entry on oeis.org

4, 9, 25, 30, 49, 70, 84, 121, 169, 286, 289, 308, 361, 440, 495, 528, 529, 594, 646, 728, 819, 841, 884, 961, 975, 1040, 1170, 1248, 1369, 1404, 1496, 1681, 1683, 1748, 1798, 1849, 1976, 2209, 2223, 2499, 2809, 2975, 3128, 3135, 3344, 3481, 3519, 3526, 3570
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 05 2009

Keywords

Comments

Sequence contains the square of every prime. - Sean A. Irvine, Oct 05 2009
Contains 4*A143206. - David A. Corneth, Apr 28 2020
Contains 2*A037074. - Bernard Schott, Apr 28 2020

Examples

			a(1) = 4 (2=2), a(2) = 9 (3=3), a(3) = 25 (5=5), a(4) = 30 (5=3+2), a(5) = 49 (7=7), a(6) = 70 (7=5+2), a(7) = 84 (7=3+2+2), a(8) = 121 (11=11), a(9) = 169 (13=13), a(10) = 286 (13=11+2), a(11) = 289(17=17), a(12) = 308 (11=7+2+2), ...
		

Crossrefs

Programs

  • Maple
    A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc: A006530 := proc(n) if n = 1 then 1; else numtheory[factorset](n) ; max(op(%)) ; end if; end: A001414 := proc(n) ifactors(n)[2] ; add( op(1,p)*op(2,p),p=%) ; end: A163836 := proc(n) option remember; local a,lpf; if n =1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then lpf := A006530(a) ; if 2*lpf = A001414(a) then return a; end if; end if; od: end if; end: seq(A163836(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
  • Mathematica
    seqQ[n_] := Module[{f = FactorInteger[n]}, If[Length[f] == 1, f[[1, 2]] == 2, f[[-1, 2]] == 1 && f[[-1, 1]] == Plus @@ Times @@@ Most[f]]]; Select[Range[4000], seqQ] (* Amiram Eldar, Apr 28 2020 *)
  • Python
    from sympy import factorint
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and 2*max(f) == sum(p*f[p] for p in f)
    print(list(filter(ok, range(3571)))) # Michael S. Branicky, Apr 09 2021

Extensions

Corrected and extended by Sean A. Irvine and R. J. Mathar, Oct 05 2009