A163836 Composites whose largest prime factor is equal to the sum of all the other prime factors (with repetition).
4, 9, 25, 30, 49, 70, 84, 121, 169, 286, 289, 308, 361, 440, 495, 528, 529, 594, 646, 728, 819, 841, 884, 961, 975, 1040, 1170, 1248, 1369, 1404, 1496, 1681, 1683, 1748, 1798, 1849, 1976, 2209, 2223, 2499, 2809, 2975, 3128, 3135, 3344, 3481, 3519, 3526, 3570
Offset: 1
Keywords
Examples
a(1) = 4 (2=2), a(2) = 9 (3=3), a(3) = 25 (5=5), a(4) = 30 (5=3+2), a(5) = 49 (7=7), a(6) = 70 (7=5+2), a(7) = 84 (7=3+2+2), a(8) = 121 (11=11), a(9) = 169 (13=13), a(10) = 286 (13=11+2), a(11) = 289(17=17), a(12) = 308 (11=7+2+2), ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc: A006530 := proc(n) if n = 1 then 1; else numtheory[factorset](n) ; max(op(%)) ; end if; end: A001414 := proc(n) ifactors(n)[2] ; add( op(1,p)*op(2,p),p=%) ; end: A163836 := proc(n) option remember; local a,lpf; if n =1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then lpf := A006530(a) ; if 2*lpf = A001414(a) then return a; end if; end if; od: end if; end: seq(A163836(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
-
Mathematica
seqQ[n_] := Module[{f = FactorInteger[n]}, If[Length[f] == 1, f[[1, 2]] == 2, f[[-1, 2]] == 1 && f[[-1, 1]] == Plus @@ Times @@@ Most[f]]]; Select[Range[4000], seqQ] (* Amiram Eldar, Apr 28 2020 *)
-
Python
from sympy import factorint def ok(n): f = factorint(n) return sum(f[p] for p in f) > 1 and 2*max(f) == sum(p*f[p] for p in f) print(list(filter(ok, range(3571)))) # Michael S. Branicky, Apr 09 2021
Extensions
Corrected and extended by Sean A. Irvine and R. J. Mathar, Oct 05 2009
Comments