cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163847 Starting from a(1)=13, a(n+1) is the smallest prime > a(n) such that 2*a(n) - a(n+1) is also prime.

Original entry on oeis.org

13, 19, 31, 43, 67, 73, 79, 97, 127, 151, 163, 199, 241, 271, 313, 349, 367, 397, 421, 433, 457, 541, 619, 631, 643, 673, 727, 811, 853, 877, 967, 997, 1087, 1123, 1129, 1171, 1213, 1297, 1303, 1327, 1423, 1447, 1471, 1483, 1543, 1597, 1627, 1657, 1693
Offset: 1

Views

Author

Keywords

Comments

This is: select the prime a(n+1) = a(n)+d such that at a(n)-d is another prime at the same distance to but at the opposite side of a(n).
It seems all these primes are in the class 1 (mod 6), that is, in A002476 as opposed to A007528.

Examples

			For a(2), the first candidate is the prime 17=13+4, which is not selected because 13-4=9 is not prime.
The next larger candidate is the prime 13+6=19, which is selected as a(2) because 13-6=7 is also prime.
For a(3) the first candidate is the prime 19+4=23, which is not selected because 19-4=15 is not prime.
The next candidate is the prime 19+10=29, which is not selected because the 19-10=9 is not prime.
The next larger candidate, the prime 19+12=31 is selected as a(3), because 19-12=7 is prime.
		

Crossrefs

Programs

  • Maple
    A163847 := proc(n) option remember; if n = 1 then 13; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime( 2*procname(n-1)-a) then RETURN(a) ; fi; od: fi; end:
    seq(A163847(n),n=1..80) ; # R. J. Mathar, Aug 29 2009
  • Mathematica
    DeltaPrimePrevNext[n_]:=Module[{d, k1, k2}, k1=n-1; k2=n+1; While[ !PrimeQ[k1] || !PrimeQ[k2], k2++; k1-- ]; d=k2-n]; lst13={}; p=13; Do[If[p-DeltaPrimePrevNext[p]>1, AppendTo[lst13, p]; p=p+DeltaPrimePrevNext[p]],{n, 7!}]; lst13
    (* Second program: *)
    k=6
    n=1
    Do[If[m==6, Print[n, " ", 13]]; If[m==k, n=n+1; Do[If[PrimeQ[2Prime[m]-Prime[j]]==True, k=j; Print[n, " ", Prime[j]]; Goto[aa]], {j, m+1, PrimePi[2Prime[m]]}]]; Label[aa]; Continue, {m, 6, 1000}] (* Zhi-Wei Sun, Feb 25 2013 *)
    sp[p_]:=Module[{p1=NextPrime[p]},While[!PrimeQ[2p-p1],p1=NextPrime[p1]];p1]; NestList[ sp,13,50] (* Harvey P. Dale, Aug 09 2023 *)
  • PARI
    first(n) = { my(res = vector(n)); res[1] = 13; for(x=2, n, forprime(p=res[x-1]+1, , if(ispseudoprime(2*res[x-1] - p), res[x]=p; break()))); res; } \\ Iain Fox, Nov 18 2017

Extensions

Definition and comment rephrased by R. J. Mathar, Aug 29 2009