A163847 Starting from a(1)=13, a(n+1) is the smallest prime > a(n) such that 2*a(n) - a(n+1) is also prime.
13, 19, 31, 43, 67, 73, 79, 97, 127, 151, 163, 199, 241, 271, 313, 349, 367, 397, 421, 433, 457, 541, 619, 631, 643, 673, 727, 811, 853, 877, 967, 997, 1087, 1123, 1129, 1171, 1213, 1297, 1303, 1327, 1423, 1447, 1471, 1483, 1543, 1597, 1627, 1657, 1693
Offset: 1
Keywords
Examples
For a(2), the first candidate is the prime 17=13+4, which is not selected because 13-4=9 is not prime. The next larger candidate is the prime 13+6=19, which is selected as a(2) because 13-6=7 is also prime. For a(3) the first candidate is the prime 19+4=23, which is not selected because 19-4=15 is not prime. The next candidate is the prime 19+10=29, which is not selected because the 19-10=9 is not prime. The next larger candidate, the prime 19+12=31 is selected as a(3), because 19-12=7 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
Programs
-
Maple
A163847 := proc(n) option remember; if n = 1 then 13; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime( 2*procname(n-1)-a) then RETURN(a) ; fi; od: fi; end: seq(A163847(n),n=1..80) ; # R. J. Mathar, Aug 29 2009
-
Mathematica
DeltaPrimePrevNext[n_]:=Module[{d, k1, k2}, k1=n-1; k2=n+1; While[ !PrimeQ[k1] || !PrimeQ[k2], k2++; k1-- ]; d=k2-n]; lst13={}; p=13; Do[If[p-DeltaPrimePrevNext[p]>1, AppendTo[lst13, p]; p=p+DeltaPrimePrevNext[p]],{n, 7!}]; lst13 (* Second program: *) k=6 n=1 Do[If[m==6, Print[n, " ", 13]]; If[m==k, n=n+1; Do[If[PrimeQ[2Prime[m]-Prime[j]]==True, k=j; Print[n, " ", Prime[j]]; Goto[aa]], {j, m+1, PrimePi[2Prime[m]]}]]; Label[aa]; Continue, {m, 6, 1000}] (* Zhi-Wei Sun, Feb 25 2013 *) sp[p_]:=Module[{p1=NextPrime[p]},While[!PrimeQ[2p-p1],p1=NextPrime[p1]];p1]; NestList[ sp,13,50] (* Harvey P. Dale, Aug 09 2023 *)
-
PARI
first(n) = { my(res = vector(n)); res[1] = 13; for(x=2, n, forprime(p=res[x-1]+1, , if(ispseudoprime(2*res[x-1] - p), res[x]=p; break()))); res; } \\ Iain Fox, Nov 18 2017
Extensions
Definition and comment rephrased by R. J. Mathar, Aug 29 2009
Comments