A163865 The binomial transform of the swinging factorial (A056040).
1, 2, 5, 16, 47, 146, 447, 1380, 4251, 13102, 40343, 124136, 381625, 1172198, 3597401, 11031012, 33798339, 103477590, 316581567, 967900224, 2957316429, 9030317478, 27558851565, 84059345244, 256265811333, 780885245826, 2378410969977, 7241027262280
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
Programs
-
Maple
a := proc(n) local k: add(binomial(n,k)*(k!/iquo(k, 2)!^2),k=0..n) end: seq(coeff(series((1-z-4*z^2)/((1+z)*(1-3*z))^(3/2),z,28),z,n),n=0..27); # Peter Luschny, Oct 31 2013
-
Mathematica
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 26 2013 *) sf[n_] := n!/Quotient[n, 2]!^2; t[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[t[n], {n,0,50}] (* G. C. Greubel, Aug 06 2017 *)
-
PARI
x='x+O('x^50); Vec((1-x-4*x^2)/((1+x)*(1-3*x))^(3/2)) \\ G. C. Greubel, Aug 06 2017
Formula
E.g.f.: exp(x)*BesselI(0,2*x)*(1+x). - Peter Luschny, Aug 26 2012
O.g.f.: (1-x-4*x^2)/((1+x)*(1-3*x))^(3/2). - Peter Luschny, Oct 31 2013
a(n) ~ 3^(n - 1/2) * sqrt(n) / (2*sqrt(Pi)). - Vaclav Kotesovec, Nov 27 2017
Comments