cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163865 The binomial transform of the swinging factorial (A056040).

Original entry on oeis.org

1, 2, 5, 16, 47, 146, 447, 1380, 4251, 13102, 40343, 124136, 381625, 1172198, 3597401, 11031012, 33798339, 103477590, 316581567, 967900224, 2957316429, 9030317478, 27558851565, 84059345244, 256265811333, 780885245826, 2378410969977, 7241027262280
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

a(n) = Sum_{k=0..n} binomial(n,k) * k$, where k$ denotes the swinging factorial of k (A056040). The swinging analog to the number of arrangements, the binomial transform of the factorial (A000522).

Crossrefs

Programs

  • Maple
    a := proc(n) local k: add(binomial(n,k)*(k!/iquo(k, 2)!^2),k=0..n) end:
    seq(coeff(series((1-z-4*z^2)/((1+z)*(1-3*z))^(3/2),z,28),z,n),n=0..27); # Peter Luschny, Oct 31 2013
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 26 2013 *)
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_] := Sum[Binomial[n, k]*sf[k], {k, 0, n}]; Table[t[n], {n,0,50}] (* G. C. Greubel, Aug 06 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x-4*x^2)/((1+x)*(1-3*x))^(3/2)) \\ G. C. Greubel, Aug 06 2017

Formula

E.g.f.: exp(x)*BesselI(0,2*x)*(1+x). - Peter Luschny, Aug 26 2012
O.g.f.: (1-x-4*x^2)/((1+x)*(1-3*x))^(3/2). - Peter Luschny, Oct 31 2013
a(n) ~ 3^(n - 1/2) * sqrt(n) / (2*sqrt(Pi)). - Vaclav Kotesovec, Nov 27 2017