A163840 Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).
1, 2, 1, 5, 3, 2, 16, 11, 8, 6, 47, 31, 20, 12, 6, 146, 99, 68, 48, 36, 30, 447, 301, 202, 134, 86, 50, 20, 1380, 933, 632, 430, 296, 210, 160, 140, 4251, 2871, 1938, 1306, 876, 580, 370, 210, 70, 13102, 8851, 5980, 4042, 2736, 1860, 1280, 910, 700, 630
Offset: 0
Examples
Triangle begins 1; 2, 1; 5, 3, 2; 16, 11, 8, 6; 47, 31, 20, 12, 6; 146, 99, 68, 48, 36, 30; 447, 301, 202, 134, 86, 50, 20;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
Programs
-
Maple
SumTria := proc(f,n,display) local m,A,j,i,T; T:=f(0); for m from 0 by 1 to n-1 do A[m] := f(m); for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od; for i from 0 to m do T := T,A[i] od; if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi; od; subsop(1=NULL,[T]) end: swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: # Computes n rows of the triangle: A163840 := n -> SumTria(swing,n,true);
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
Formula
T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.
Comments