cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163840 Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 16, 11, 8, 6, 47, 31, 20, 12, 6, 146, 99, 68, 48, 36, 30, 447, 301, 202, 134, 86, 50, 20, 1380, 933, 632, 430, 296, 210, 160, 140, 4251, 2871, 1938, 1306, 876, 580, 370, 210, 70, 13102, 8851, 5980, 4042, 2736, 1860, 1280, 910, 700, 630
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

Triangle read by rows.
An analog to the binomial triangle of the factorials (A076571).

Examples

			Triangle begins
    1;
    2,   1;
    5,   3,   2;
   16,  11,   8,   6;
   47,  31,  20,  12,  6;
  146,  99,  68,  48, 36, 30;
  447, 301, 202, 134, 86, 50, 20;
		

Crossrefs

Row sums are A163843.

Programs

  • Maple
    SumTria := proc(f,n,display) local m,A,j,i,T; T:=f(0);
    for m from 0 by 1 to n-1 do A[m] := f(m);
    for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od;
    for i from 0 to m do T := T,A[i] od;
    if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi;
    od; subsop(1=NULL,[T]) end:
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    # Computes n rows of the triangle:
    A163840 := n -> SumTria(swing,n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.

A163649 Triangle interpolating between (-1)^n (A033999) and A056040(n), read by rows.

Original entry on oeis.org

1, -1, 1, 1, -2, 2, -1, 3, -6, 6, 1, -4, 12, -24, 6, -1, 5, -20, 60, -30, 30, 1, -6, 30, -120, 90, -180, 20, -1, 7, -42, 210, -210, 630, -140, 140, 1, -8, 56, -336, 420, -1680, 560, -1120, 70
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Comments

Given T(n,k) = (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)!, let A(n,k) = abs(T(n,k)) be the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*q^k. Substituting q^k -> 1/(floor(k/2)+1) in the polynomials gives the extended Motzkin numbers A189912. (See A089627 for the Motzkin numbers and A194586 for the complementary Motzkin numbers.)

Examples

			1
-1, 1
1, -2, 2
-1, 3, -6, 6
1, -4, 12, -24, 6
-1, 5, -20, 60, -30, 30
1, -6, 30, -120, 90, -180, 20
-1, 7, -42, 210, -210, 630, -140, 140
1, -8, 56, -336, 420, -1680, 560, -1120, 70
		

Crossrefs

Row sums give A163650, row sums of absolute values give A163865.
Aerated versions A194586 (odd case) and A089627 (even case).

Programs

  • Maple
    a := proc(n,k) (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)! end:
    seq(print(seq(a(n,k),k=0..n)),n=0..8);
  • Mathematica
    t[n_, k_] := (-1)^(n - k)*Floor[k/2]!^(-2)*n!/(n - k)!; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((-1)^(n -k)*( (floor(k/2))! )^(-2)*(n!/(n - k)!), ", "))) \\ G. C. Greubel, Aug 01 2017

Formula

T(n,k) = (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)!.
E.g.f.: egf(x,y) = exp(-x)*BesselI(0,2*x*y)*(1+x*y).
Showing 1-2 of 2 results.