cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163843 Row sums of triangle A163840.

Original entry on oeis.org

1, 3, 10, 41, 116, 427, 1240, 4181, 12472, 40091, 121364, 380701, 1160186, 3593969, 10979532, 33785469, 103258800, 316532947, 966976444, 2957131673, 9026437602, 27558146133, 84043120308, 256263107177, 780817641926
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Crossrefs

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n) local i,k; add(add(binomial(n-k,n-i)*swing(i),i=k..n),k=0..n) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 06 2017 *)

Formula

a(n) = Sum_{k=0..n} Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).

A163842 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial transform. Same as interpolating the beta numbers 1/beta(n,n) (A002457) with (A163869). Triangle read by rows, for n >= 0, k >= 0.

Original entry on oeis.org

1, 7, 6, 43, 36, 30, 249, 206, 170, 140, 1395, 1146, 940, 770, 630, 7653, 6258, 5112, 4172, 3402, 2772, 41381, 33728, 27470, 22358, 18186, 14784, 12012, 221399, 180018, 146290, 118820, 96462, 78276, 63492, 51480
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Examples

			Triangle begins:
      1;
      7,     6;
     43,    36,    30;
    249,   206,   170,   140;
   1395,  1146,   940,   770,   630;
   7653,  6258,  5112,  4172,  3402,  2772;
  41381, 33728, 27470, 22358, 18186, 14784, 12012;
		

Crossrefs

Programs

  • Maple
    # Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
    a := n -> SumTria(k->swing(2*k+1),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).

A163841 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).

Original entry on oeis.org

1, 3, 2, 11, 8, 6, 45, 34, 26, 20, 195, 150, 116, 90, 70, 873, 678, 528, 412, 322, 252, 3989, 3116, 2438, 1910, 1498, 1176, 924, 18483, 14494, 11378, 8940, 7030, 5532, 4356, 3432, 86515, 68032, 53538
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

For n >= 0, k >= 0 let T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040). Triangle read by rows.

Examples

			Triangle begins
     1;
     3,    2;
    11,    8,    6;
    45,   34,   26,   20;
   195,  150,  116,   90,   70;
   873,  678,  528,  412,  322,  252;
  3989, 3116, 2438, 1910, 1498, 1176,  924;
		

Crossrefs

Programs

  • Maple
    Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
    a := n -> SumTria(k->swing(2*k),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
Showing 1-3 of 3 results.