A163974 Number of ways to write n as the root-mean-square (RMS) of a set of distinct primes.
0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 7, 0, 3, 3, 11, 1, 11, 2, 11, 3, 37, 0, 44, 18, 52, 24, 103, 50, 147, 52, 214, 170, 475, 229, 711, 375, 1116, 587, 2101, 542, 3009, 1940, 4870, 1680, 8961, 5923, 16712, 4190, 24098, 11552, 42715, 11347, 69608, 32495, 103914, 50493, 189499, 103581, 304367, 152520, 453946, 203153, 783817, 246991, 1345661
Offset: 1
Examples
a(13) = 7 because 13 is the RMS of 7 sets of distinct primes: 13 = RMS(13) = RMS(7,17) = RMS(5,11,19) = RMS(7,13,17) = RMS(5,11,13,19) = RMS(5,7,11,17,19) = RMS(5,7,11,13,17,19).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
- Eric Weisstein's World of Mathematics, Root-Mean-Square
Programs
-
Haskell
a163974 n = f a000040_list 1 nn 0 where f (p:ps) l nl xx | yy > nl = 0 | yy < nl = f ps (l + 1) (nl + nn) yy + f ps l nl xx | otherwise = if w == n then 1 else 0 where w = if r == 0 then a000196 m else 0 (m, r) = divMod yy l yy = xx + p * p nn = n ^ 2 -- Reinhard Zumkeller, Feb 13 2013
-
Maple
sps:= proc(i) option remember; `if`(i=1, 4, sps(i-1) +ithprime(i)^2) end: b:= proc(n, i, t) if n<0 then 0 elif n=0 then `if`(t=0, 1, 0) elif i=2 then `if`(n=4 and t=1, 1, 0) else b(n, i, t):= b(n, prevprime(i), t) +b(n-i^2, prevprime(i), t-1) fi end: a:= proc(n) option remember; local s, k; s:= `if`(isprime(n), 1, 0); for k from 2 while sps(k)<=k*n^2 do s:= s +b(k*n^2, nextprime(floor(sqrt(k*n^2 -sps(k-1)))-1), k) od; s end: seq(a(n), n=1..30);
-
Mathematica
sps[i_] := sps[i] = If[i == 1, 4, sps[i - 1] + Prime[i]^2]; b[n_, i_, t_] := b[n, i, t] = If[ n < 0 , 0 , If[ n == 0 , If[t == 0, 1, 0], If[ i == 2 , If[n == 4 && t == 1, 1, 0], b[n, NextPrime[i, -1], t] + b[n - i^2, NextPrime[i, -1], t - 1]]]]; a[n_] := a[n] = (s = Boole[PrimeQ[n]]; For[k = 2, sps[k] <= k*n^2, k++, s = s + b[k*n^2, NextPrime[ Floor[ Sqrt[k*n^2 - sps[k - 1]]] - 1], k]]; s); Table[ Print[a[n]]; a[n], {n, 1, 58}] (* Jean-François Alcover, Jul 11 2012, translated from Maple *)
Extensions
Terms a(59)-a(67) by Reinhard Zumkeller, Feb 13 2013