cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163981 a(n) is the smallest prime of the form prime(n+1)*k - prime(n), k >= 1, where prime(n) is the n-th prime.

Original entry on oeis.org

7, 2, 2, 37, 2, 89, 2, 73, 151, 2, 43, 127, 2, 239, 59, 419, 2, 73, 359, 2, 401, 419, 1163, 881, 307, 2, 967, 2, 569, 3697, 397, 691, 2, 457, 2, 163, 821, 839, 179, 1259, 2, 2111, 2, 1777, 2, 223, 3803, 3863, 2, 3499, 1201, 2, 2269, 263, 269, 1889, 2, 283, 1409, 2, 2647
Offset: 1

Views

Author

Leroy Quet, Aug 07 2009

Keywords

Comments

a(n) = 2 if and only if n is in A029707. - Robert Israel, Jan 16 2019

Crossrefs

Contains A085704.

Programs

  • Maple
    a := proc (n) local k: for k while isprime(ithprime(n+1)*k-ithprime(n)) = false do end do: ithprime(n+1)*k-ithprime(n) end proc: seq(a(n), n = 1 .. 65); # Emeric Deutsch, Aug 10 2009
  • Mathematica
    a[n_] := Module[{p, q, r}, For[p = Prime[n]; q = Prime[n + 1]; k = 1, True, k++, If[PrimeQ[r = q k - p], Return[r]]]];
    Array[a, 100] (* Jean-François Alcover, Aug 28 2020 *)
  • PARI
    a(n) = my(k=1); while (!isprime(p=prime(n+1)*k - prime(n)), k++); p; \\ Michel Marcus, Jul 02 2021
  • Python
    from sympy import isprime, nextprime, prime
    def a(n):
        pn = prime(n); pn1 = nextprime(pn); k = 1
        while not isprime(pn1*k - pn): k += 1
        return pn1*k - pn
    print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Jul 02 2021
    

Extensions

Extended by Emeric Deutsch, Aug 10 2009