A163988 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 22, 462, 9702, 203742, 4278582, 89849991, 1886844960, 39623642520, 832094358480, 17473936704840, 366951729513600, 7705966552789890, 161824882502745000, 3398313815357307000, 71364407061765925800
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..740
- Index entries for linear recurrences with constant coefficients, signature (20, 20, 20, 20, 20, -210).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7) )); // G. C. Greubel, Apr 25 2019 -
Mathematica
CoefficientList[Series[(1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7), {x,0,20}], x] (* G. C. Greubel, Aug 24 2017 *) coxG[{6, 210, -20, 20}] (* The coxG program is at A169452 *)
-
PARI
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
-
Sage
((1+x)*(1-x^6)/(1-21*x+230*x^6-210*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -21*x +230*x^6 -210*x^7). - G. C. Greubel, Apr 25 2019
Comments