A164006 Zero together with row 6 of the array in A163280.
0, 11, 22, 27, 44, 50, 66, 84, 104, 126, 150, 176, 204, 234, 266, 300, 336, 374, 414, 456, 500, 546, 594, 644, 696, 750, 806, 864, 924, 986, 1050, 1116, 1184, 1254, 1326, 1400, 1476, 1554, 1634, 1716, 1800, 1886, 1974, 2064, 2156, 2250, 2346, 2444, 2544, 2646
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164006 := proc(n) if n = 0 then 0; else A163280(6,n) ; fi; end: seq(A164006(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
-
Mathematica
Join[{0,11,22,27}, Table[n*(n + 5), {n, 4, 50}]] (* G. C. Greubel, Aug 28 2017 *)
-
PARI
concat(0, Vec(x*(8*x^6-21*x^5+23*x^4-18*x^3+6*x^2+11*x-11)/(x-1)^3 + O(x^100))) \\ Colin Barker, Nov 24 2014
Formula
From Colin Barker, Nov 24 2014: (Start)
a(n) = n*(n+5) for n > 4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7.
G.f.: x*(8*x^6 - 21*x^5 + 23*x^4 - 18*x^3 + 6*x^2 + 11*x - 11) / (x-1)^3. (End)
E.g.f.: (x/2)*(10 + 8*x + x^2 + 2*(x + 6)*exp(x)). - G. C. Greubel, Aug 28 2017
Extensions
Extended beyond a(12) by R. J. Mathar, Aug 09 2009