cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164007 Zero together with row 7 of the array in A163280.

Original entry on oeis.org

0, 13, 26, 33, 52, 55, 78, 91, 112, 135, 160, 187, 216, 247, 280, 315, 352, 391, 432, 475, 520, 567, 616, 667, 720, 775, 832, 891, 952, 1015, 1080, 1147, 1216, 1287, 1360, 1435, 1512, 1591, 1672, 1755, 1840, 1927, 2016, 2107, 2200, 2295, 2392, 2491, 2592, 2695
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164007 := proc(n) if n = 0 then 0; else A163280(7,n) ; fi; end: seq(A164007(n),n=0..80) ;  # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 13, 26, 33, 52, 55, 78}, Table[n*(n + 6), {n, 7, 50}]] (* G. C. Greubel, Aug 28 2017 *)
    LinearRecurrence[{3,-3,1},{0,13,26,33,52,55,78,91,112,135},50] (* Harvey P. Dale, Jul 03 2020 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x*(13 - 13*x - 6*x^2 + 18*x^3 - 28*x^4 + 36*x^5 - 30*x^6 + 18*x^7 - 6*x^8)/(1 - x)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

From G. C. Greubel, Aug 28 2017: (Start)
a(n) = n*(n+6), n >= 7.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 7.
G.f.: x*(13 - 13*x - 6*x^2 + 18*x^3 - 28*x^4 + 36*x^5 - 30*x^6 + 18*x^7 - 6*x^8)/(1 - x)^3.
E.g.f.: (7*x + x^2)*exp(x) + 6*x +5*x^2 + x^3 + x^4/2 + x^6/120. (End)

Extensions

Extended by R. J. Mathar, Aug 09 2009