cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164033 a(n) = ((4+3*sqrt(2))*(3+sqrt(2))^n + (4-3*sqrt(2))*(3-sqrt(2))^n)/4.

Original entry on oeis.org

2, 9, 40, 177, 782, 3453, 15244, 67293, 297050, 1311249, 5788144, 25550121, 112783718, 497851461, 2197622740, 9700776213, 42821298098, 189022355097, 834385043896, 3683153777697, 16258227358910, 71767287709581
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

Keywords

Comments

Binomial transform of A020727. Third binomial transform of A164090. Inverse binomial transform of A164034.

Crossrefs

Cf. A020727, A164090 (2, 3, 4, 6, 8, 12), A164034.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((4+3*r)*(3+r)^n+(4-3*r)*(3-r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 09 2009
    
  • Mathematica
    CoefficientList[Series[(2-3*x)/(1-6*x+7*x^2), {x, 0, 1000}],
      x] (* or *) LinearRecurrence[{6,-7},{2,9}, 50] (* G. C. Greubel, Sep 08 2017 *)
  • PARI
    x='x+O('x^50); Vec((2-3*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Sep 08 2017

Formula

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 2, a(1) = 9.
G.f.: (2-3*x)/(1-6*x+7*x^2).
E.g.f.: (2*cosh(sqrt(2)*x) + (3/sqrt(2))*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 08 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 09 2009