cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164072 a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 42, 238, 1316, 7196, 39144, 212408, 1151248, 6236272, 33772704, 182873824, 990172736, 5361148352, 29026768512, 157158071168, 850889810176, 4606905485056, 24942786537984, 135045615513088, 731165912572928
Offset: 0

Views

Author

Klaus Brockhaus, Aug 09 2009

Keywords

Comments

Binomial transform of A081179 without initial 0. Inverse binomial transform of A164031.

Crossrefs

Programs

  • Magma
    [ n le 2 select 6*n-5 else 8*Self(n-1)-14*Self(n-2): n in [1..21] ];
    
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 8*x + 14*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{8,-14}, {1,7}, 50] (* G. C. Greubel, Sep 09 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 09 2017

Formula

a(n) = ((2+3*sqrt(2))*(4+sqrt(2))^n + (2-3*sqrt(2))*(4-sqrt(2))^n)/4.
G.f.: (1-x)/(1-8*x+14*x^2).
E.g.f.: (cosh(sqrt(2)*x) + (3*sqrt(2)/2)*sinh(sqrt(2)*x))*exp(4*x). - G. C. Greubel, Sep 09 2017