cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164082 Rounded value of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.

Original entry on oeis.org

6, 39, 124, 260, 408, 513, 537, 482, 379, 264, 166, 95, 50, 24, 11, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2009

Keywords

Comments

The floor of this real sequence is A164081, the ceiling is A164083.
The surface area of the n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/ A072479.
There are 18 nonzero terms in this sequence. - G. C. Greubel, Sep 11 2017

Examples

			Table of approximate real values before rounding up or down:
========================
n ((2*pi)^n) / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
		

References

  • Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
  • Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
  • Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.

Crossrefs

Programs

  • Maple
    A164082 := proc(n) (2*Pi)^n/(n-1)! ; round(%) ; end: seq(A164082(n),n=1..80) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    Table[Round[(2*Pi)^n/(n - 1)!], {n, 1, 20}] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    for(n=1,20, print1(round((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 11 2017

Formula

a(n) = round(((2*Pi)^n)/(n-1)!).

Extensions

Definition corrected by R. J. Mathar, Sep 09 2009