A164083 Ceiling of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.
7, 40, 125, 260, 409, 513, 537, 482, 379, 265, 167, 95, 50, 25, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
Table of approximate real values before rounding up. ======================== n ((2*pi)^n) / (n-1)! 1 6.28318531 = A019692 2 39.4784176 = 2*A164102 3 124.025107 = 4*A091925 4 259.757576 = 8*A164109 5 408.026246 6 512.740903 7 536.941018 8 481.957131 9 378.528246 10 264.262568 11 166.041068 12 94.8424365 13 49.6593836 14 24.00147 15 10.7718345 16 4.5120955 17 1.77189576 18 0.654891141 19 0.228600133 20 0.075596684 ========================
References
- Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 9, 1993.
- Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.
- Sommerville, D. M. Y. An Introduction to the Geometry of n Dimensions. New York: Dover, p. 136, 1958.
Links
- Eric W. Weisstein, Hypersphere,
Programs
-
Mathematica
Table[Ceiling[(2Pi)^n/(n-1)!],{n,60}] (* Harvey P. Dale, Jul 30 2020 *)
Formula
a(n) = ceiling(((2*pi)^n)/(n-1)!).
Extensions
Definition corrected - R. J. Mathar, Sep 09 2009
Comments