cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164097 Numbers k such that 6*k + 7 is a perfect square.

Original entry on oeis.org

3, 7, 19, 27, 47, 59, 87, 103, 139, 159, 203, 227, 279, 307, 367, 399, 467, 503, 579, 619, 703, 747, 839, 887, 987, 1039, 1147, 1203, 1319, 1379, 1503, 1567, 1699, 1767, 1907, 1979, 2127, 2203, 2359, 2439, 2603, 2687, 2859, 2947, 3127, 3219, 3407, 3503, 3699
Offset: 1

Views

Author

Vincenzo Librandi, Aug 10 2009

Keywords

Comments

The entries are prime, or divisible by 3, or divisible by prime of the form 3*m+1.

Crossrefs

Cf. A062717, A104777 (the squares 6*k+7).

Programs

  • Magma
    [n: n in [1..4000] | IsSquare(6*n+7)]; // Vincenzo Librandi, Oct 12 2012
  • Mathematica
    Select[Range[4000], IntegerQ[Sqrt[6 # + 7 ]] &] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {3, 7, 19, 27, 47}, 50] (* Harvey P. Dale, Apr 29 2011 *)

Formula

From R. J. Mathar, Aug 26 2009: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-3-4*x-6*x^2+x^4)/((1+x)^2*(x-1)^3).
a(n) = 3*(2*n-1+2*n^2)/4 -(-1)^n*(1+2*n)/4 = A062717(n+1)-1. (End)
Sum_{n>=1} 1/a(n) = 1 + (tan((2+sqrt(7))*Pi/6) - cot((1+sqrt(7))*Pi/6))*Pi/(2*sqrt(7)). - Amiram Eldar, Feb 24 2023

Extensions

Edited by R. J. Mathar, Aug 26 2009