cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164118 Expansion of (1 - x^2) * (1 - x^4) * (1 - x^5) / ((1 - x) * (1 - x^10)) in powers of x.

Original entry on oeis.org

1, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1
Offset: 0

Views

Author

Michael Somos, Aug 10 2009

Keywords

Crossrefs

A164116(n) = (-1)^n * a(n). Convolution inverse of A164117.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^4) / (1 - x + x^2 - x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Sep 12 2017 *)
  • PARI
    {a(n) = -(n==0) + [2, 1, 0, 0, -1, -2, -1, 0, 0, 1][n%10 + 1]}

Formula

Euler transform of length 10 sequence [ 1, -1, 0, -1, -1, 0, 0, 0, 0, 1].
a(-n) = a(n). a(n + 5) = -a(n) unless n=0 or n=-5.
G.f.: (1 - x^4) / (1 - x + x^2 - x^3 + x^4).