A164120 Partial sums of A162396.
5, 7, 17, 21, 41, 49, 89, 105, 185, 217, 377, 441, 761, 889, 1529, 1785, 3065, 3577, 6137, 7161, 12281, 14329, 24569, 28665, 49145, 57337, 98297, 114681, 196601, 229369, 393209, 458745, 786425, 917497, 1572857, 1835001, 3145721, 3670009
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
Programs
-
Magma
T:=[ n le 2 select 8-3*n else 2*Self(n-2): n in [1..38] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
-
Mathematica
Rest[CoefficientList[Series[x*(5 + 2*x)/((1 - x)*(1 - 2*x^2)), {x,0,50}], x]] (* or *) LinearRecurrence[{1,2,-2}, {5,7,17}, 50] (* G. C. Greubel, Sep 12 2017 *)
-
PARI
x='x+O('x^50); Vec(x*(5+2*x)/((1-x)*(1-2*x^2))) \\ G. C. Greubel, Sep 12 2017
Formula
a(n) = 2*a(n-2) + 7 for n > 2; a(1) = 5, a(2) = 7.
a(n) = (19 - 5*(-1)^n)*2^((2*n-1+(-1)^n)/4)/2 - 7.
G.f.: x*(5+2*x)/((1-x)*(1-2*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3). - G. C. Greubel, Sep 12 2017