A164282 Hypotenuses of more than two Pythagorean triangles.
65, 85, 125, 130, 145, 170, 185, 195, 205, 221, 250, 255, 260, 265, 290, 305, 325, 340, 365, 370, 375, 377, 390, 410, 425, 435, 442, 445, 455, 481, 485, 493, 500, 505, 510, 520, 530, 533, 545, 555, 565, 580, 585, 595, 610, 615, 625, 629, 650, 663, 680, 685, 689
Offset: 1
Keywords
Examples
65 is included because there are 4 distinct Pythagorean triangles with hypotenuse 65. In particular, 65^2 = 16^2 + 63^2 = 25^2 + 60^2 = 33^2 + 56^2 = 39^2 + 52^2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Clear[lst,f,n,i,k] f[n_]:=Module[{i=0,k=0},Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]],k++ ],{i,n-1,1,-1}];k/2]; lst={};Do[If[f[n]>2,AppendTo[lst,n]],{n,5*5!}];lst
-
PARI
ok(n)={my(t=0); for(k=1, sqrtint(n^2\2), t += issquare(n^2-k^2)); t>2} select(ok, [1..1000]) \\ Andrew Howroyd, Aug 17 2018
Extensions
Terms a(45) and beyond from Andrew Howroyd, Aug 17 2018
Comments