A164288 Members of A164368 which are not Ramanujan primes.
109, 137, 191, 197, 283, 521, 617, 683, 907, 991, 1033, 1117, 1319, 1493, 1619, 1627, 1697, 1741, 1747, 1801, 1931, 1949, 2011, 2111, 2143, 2153, 2293, 2417, 2539, 2543, 2549, 2591, 2621, 2837, 2927, 2953, 2969, 3079, 3119, 3187, 3203, 3329, 3389, 3407
Offset: 1
Keywords
Examples
p=137 is the least lesser of twin primes which is not a Ramanujan prime. Therefore it is in the sequence. [From _Vladimir Shevelev_, Aug 31 2009]
Links
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
- V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
- V. Shevelev, Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes, J. Int. Seq. 15 (2012) # 12.5.4.
Programs
-
Mathematica
nn = 250; A164368 = Select[Prime[Range[2 nn]], PrimePi[2 NextPrime[#/2]] != PrimePi[#]&]; Rama = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, Rama[[s+1]] = k], {k, Prime[3 nn]}]; A104272 = Rama+1; Complement[A164368, A104272] (* Jean-François Alcover, Oct 27 2018, after T. D. Noe in A104272 *)
Extensions
I added 521. - Vladimir Shevelev, Aug 17 2009
Redefined in terms of A164368 and extended by R. J. Mathar, Aug 18 2009
Comments