A164294 Primes prime(k) such that all integers in [(prime(k-1)+1)/2,(prime(k)-1)/2] are composite, excluding those primes in A080359.
131, 151, 229, 233, 311, 571, 643, 727, 941, 1013, 1051, 1153, 1373, 1531, 1667, 1669, 1723, 1783, 1787, 1831, 1951, 1979, 2029, 2131, 2213, 2239, 2311, 2441, 2593, 2621, 2633, 2659, 2663, 2887, 3001, 3011, 3019, 3121, 3169, 3209, 3253, 3347, 3413, 3457
Offset: 1
Keywords
Examples
For the prime 1531=A000040(242), the preceding prime is A000040(241)=1523, and the integers from (1523+1)/2 = 762 up to (1531-1)/2 = 765 are all composite, as they fall in the gap between A000040(135) and A000040(136). In addition, 1531 is not in A080359, which adds 1531 to this sequence here.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1106
- V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009. [From _Vladimir Shevelev_, Aug 20 2009]
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
Programs
-
Mathematica
maxPrime = 3500; kmax = PrimePi[maxPrime]; A164333 = Select[Table[{(Prime[k - 1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, kmax}], AllTrue[Range[#[[1]], #[[2]]], CompositeQ] &][[All, 2]]*2 + 1; b[1] = 2; b[n_] := b[n] = Module[{k = b[n - 1]}, While[(PrimePi[k] - PrimePi[Quotient[k, 2]]) != n, k++]; k]; A080359 = Reap[For[n = 1, b[n] <= maxPrime, n++, Sow[b[n]]]][[2, 1]]; Complement[A164333, A080359] (* Jean-François Alcover, Sep 14 2018 *)
-
PARI
okprime(p) = { my(k = primepi(p)); for (i = (prime(k-1)+1)/2, (prime(k)-1)/2, if (isprime(i), return (0));); return (1);} lista(nn) = {vlp = readvec("b080359.txt"); forprime (p=2, nn, if (! vecsearch(vlp, p) && okprime(p), print1(p, ", ")););} \\ Michel Marcus, Jan 15 2014
Extensions
Extended beyond 571 by R. J. Mathar, Oct 02 2009
Comments