cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081175 Numbers of the form Sum_{i=1..k} i^j, j >= 1, k >= 1.

Original entry on oeis.org

1, 3, 5, 6, 9, 10, 14, 15, 17, 21, 28, 30, 33, 36, 45, 55, 65, 66, 78, 91, 98, 100, 105, 120, 129, 136, 140, 153, 171, 190, 204, 210, 225, 231, 253, 257, 276, 285, 300, 325, 351, 354, 378, 385, 406, 435, 441, 465, 496, 506, 513, 528, 561, 595, 630, 650, 666, 703
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2003

Keywords

Comments

Union of sums of k-th powers, for k >= 1.

Examples

			30 is in the set because 30 = 1^2 + 2^2 + 3^2 + 4^2 (j=2, k=4).
		

Crossrefs

For primes in this sequence see A164307.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:=select(`<=`,{1, seq(seq(sum(i^k,i=1..m), m=2..floor((N*(k+1))^(1/(k+1)))),k = 1 ..ilog2(N-1))},N):
    sort(convert(A,list)); # Robert Israel, Jan 26 2015
  • Mathematica
    Take[ Union[ Flatten[ Table[ Sum[ i^j, {i, 1, n}], {j, 1, 9}, {n, 1, 40}]]], 60]

Extensions

Corrected and extended by Robert G. Wilson v, May 08 2003

A164312 Numbers n such that k^n + (k-1)^n + ... + 3^n + 2^n + 1 is prime for some k.

Original entry on oeis.org

1, 2, 4, 8, 16, 1440
Offset: 1

Views

Author

Keywords

Comments

These terms have k-values {2, 2, 2, 2, 2, 5} respectively. When k = 2, the prime mentioned in the definition is given in A164307. - Derek Orr, Jun 06 2014

Examples

			1^1 + 2^1 = 3 is prime (k = 2).
1^2 + 2^2 = 5 is prime (k = 2).
1^4 + 2^4 = 17 is prime (k = 2).
1^8 + 2^8 = 257 is prime (k = 2).
1^16 + 2^16 = 65537 is prime (k = 2).
1^1440 + 2^1440 + 3^1440 + 4^1440 + 5^1440 = 3.287049497374559048967261852*10^1006 = 3287049497374559048967261852 ... 458593539025033893379 is prime (k = 5).
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[s=0;Do[If[PrimeQ[s+=n^x],AppendTo[lst,x];Print[Date[],x]],{n,4!}],{x,7!}];lst
  • PARI
    a(n)=for(k=1,10^3,if(ispseudoprime(sum(i=1,k,i^n)),return(k)))
    n=1;while(n<5000,if(a(n),print1(n,", "));n++) \\ Derek Orr, Jun 06 2014

Extensions

Definition improved by Derek Orr, Jun 06 2014
Showing 1-2 of 2 results.