A091440 Smallest number m such that m#/phi(m#) >= n, where m# indicates the primorial (A034386) of m and phi is Euler's totient function.
1, 2, 3, 7, 13, 23, 43, 79, 149, 257, 461, 821, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037, 131707, 230773, 405401, 710569, 1246379, 2185021, 3831913, 6720059, 11781551, 20657677, 36221753, 63503639, 111333529, 195199289, 342243479, 600036989
Offset: 1
Keywords
Examples
7#/phi(7#) = (2*3*5*7)/(1*2*4*6) = 4.375 >= 4, 5#/phi(5#) = 3.75. Hence a(4) = 7.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..44
- Eric Weisstein's World of Mathematics, Primorial.
- Eric Weisstein's World of Mathematics, Totient Function.
Programs
-
Mathematica
prod=1; i=0; Table[While[prod
-
PARI
al(lim) = local(mm,n,m); mm=3; n=2; m=1; forprime(x=3,lim, n*=x; m*= (x-1); if (n\m >= mm, print1(x","); mm++)); /* This will generate all terms of this sequence from the 3rd onward, up to lim. The computation slows down for large values because of the size of the internal values. */ \\ Fred Schneider, Aug 13 2009, modified by Franklin T. Adams-Watters, Aug 29 2009
Formula
a(n) = prime(A005579(n)) for n >= 4. - Amiram Eldar, Apr 18 2025
Extensions
More terms from David W. Wilson, Sep 28 2005
Sequence reference in name corrected by Peter Munn, Apr 29 2017
Comments