A164358 Expansion of (1 - x^2)^2 * (1 - x^3) / ((1 - x)^3 * (1 - x^4)) in powers of x.
1, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2
Offset: 0
Examples
G.f. = 1 + 3*x + 4*x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 3*x^7 + 2*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for coordination sequences
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1).
Programs
-
Magma
m:=150; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x+4*x^2+3*x^3+x^4)/(1-x^4))); // G. C. Greubel, Sep 26 2018 -
Mathematica
a[ n_] := - Boole[n == 0] + 3 - If[ EvenQ[n], (-1)^(n/2), 0]; CoefficientList[Series[(1+3*x+4*x^2+3*x^3+x^4)/(1-x^4), {x, 0, 150}], x] (* G. C. Greubel, Sep 26 2018 *)
-
PARI
{a(n) = -(n==0) + 3 - if( n%2 == 0, (-1)^(n/2), 0)};
-
PARI
x='x+O('x^150); Vec((1+3*x+4*x^2+3*x^3+x^4)/(1-x^4)) \\ G. C. Greubel, Sep 26 2018
Formula
a(n) = 3*b(n) unless n=0 where b(n) is multiplicative with b(2) = 4/3, b(2^e) = 2/3 if e>1, b(p^e) = 1 if p>2.
Euler transform of length 4 sequence [3, -2, -1, 1].
Moebius transform is length 4 sequence [3, 1, 0, -2].
a(n) = a(-n) for all n in Z. a(n+4) = a(n) unless n=0 or n=-4. a(4*n) == 2 unless n=0. a(2*n + 1) = 3. a(4*n + 2) = 4.
G.f.: -1 + 3 / (1 - x) - 1 / (1 + x^2).
G.f.: (1+x)*(1+x+x^2)/((1-x)*(1+x^2)). - N. J. A. Sloane, Nov 21 2019
Comments