cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164358 Expansion of (1 - x^2)^2 * (1 - x^3) / ((1 - x)^3 * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 4, 3, 2
Offset: 0

Views

Author

Michael Somos, Aug 13 2009

Keywords

Comments

Coordination sequence for a chain of hexagons joined by single edges. - N. J. A. Sloane, Nov 21 2019

Examples

			G.f. = 1 + 3*x + 4*x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 3*x^7 + 2*x^8 + ...
		

Programs

  • Magma
    m:=150; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x+4*x^2+3*x^3+x^4)/(1-x^4))); // G. C. Greubel, Sep 26 2018
  • Mathematica
    a[ n_] := - Boole[n == 0] + 3 - If[ EvenQ[n], (-1)^(n/2), 0];
    CoefficientList[Series[(1+3*x+4*x^2+3*x^3+x^4)/(1-x^4), {x, 0, 150}], x] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    {a(n) = -(n==0) + 3 - if( n%2 == 0, (-1)^(n/2), 0)};
    
  • PARI
    x='x+O('x^150); Vec((1+3*x+4*x^2+3*x^3+x^4)/(1-x^4)) \\ G. C. Greubel, Sep 26 2018
    

Formula

a(n) = 3*b(n) unless n=0 where b(n) is multiplicative with b(2) = 4/3, b(2^e) = 2/3 if e>1, b(p^e) = 1 if p>2.
Euler transform of length 4 sequence [3, -2, -1, 1].
Moebius transform is length 4 sequence [3, 1, 0, -2].
a(n) = a(-n) for all n in Z. a(n+4) = a(n) unless n=0 or n=-4. a(4*n) == 2 unless n=0. a(2*n + 1) = 3. a(4*n + 2) = 4.
G.f.: -1 + 3 / (1 - x) - 1 / (1 + x^2).
G.f.: (1+x)*(1+x+x^2)/((1-x)*(1+x^2)). - N. J. A. Sloane, Nov 21 2019