cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164359 Expansion of (1 - x^2)^3 / ((1 - x)^3 * (1 - x^3)) in powers of x.

Original entry on oeis.org

1, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3
Offset: 0

Views

Author

Michael Somos, Aug 13 2009

Keywords

Examples

			G.f. = 1 + 3*x + 3*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 2*x^9 + ...
		

Crossrefs

Cf. A244893.

Programs

  • Mathematica
    a[ n_] := -Boole[n == 0] + 2 + KroneckerSymbol[ 9, n]; (* Michael Somos, Apr 17 2015 *)
    CoefficientList[Series[(1-x^2)^3/((1-x)^3*(1-x^3)),{x,0,120}],x] (* or *) LinearRecurrence[{0,0,1},{1,3,3,2},120] (* or *) PadRight[{1},120,{2,3,3}] (* Harvey P. Dale, Aug 16 2021 *)
  • PARI
    {a(n) = -(n==0) + 2 + kronecker(9, n)};

Formula

Euler transform of length 3 sequence [ 3, -3, 1].
Moebius transform is length 3 sequence [ 3, 0, -1].
a(-n) = a(n) for all n in Z. a(n+3) = a(n) unless n=0 or n=-3. a(3*n) = 2 unless n=0. a(3*n + 1) = a(3*n + 2) = 3.
G.f.: -1 + (1/3) * ( 8 / (1 - x) - (2 + x) / (1 + x + x^2) ).
a(n) = A244893(n) if n>1. - Michael Somos, Apr 17 2015