A164359 Expansion of (1 - x^2)^3 / ((1 - x)^3 * (1 - x^3)) in powers of x.
1, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3
Offset: 0
Examples
G.f. = 1 + 3*x + 3*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 2*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Crossrefs
Cf. A244893.
Programs
-
Mathematica
a[ n_] := -Boole[n == 0] + 2 + KroneckerSymbol[ 9, n]; (* Michael Somos, Apr 17 2015 *) CoefficientList[Series[(1-x^2)^3/((1-x)^3*(1-x^3)),{x,0,120}],x] (* or *) LinearRecurrence[{0,0,1},{1,3,3,2},120] (* or *) PadRight[{1},120,{2,3,3}] (* Harvey P. Dale, Aug 16 2021 *)
-
PARI
{a(n) = -(n==0) + 2 + kronecker(9, n)};
Formula
Euler transform of length 3 sequence [ 3, -3, 1].
Moebius transform is length 3 sequence [ 3, 0, -1].
a(-n) = a(n) for all n in Z. a(n+3) = a(n) unless n=0 or n=-3. a(3*n) = 2 unless n=0. a(3*n + 1) = a(3*n + 2) = 3.
G.f.: -1 + (1/3) * ( 8 / (1 - x) - (2 + x) / (1 + x + x^2) ).
a(n) = A244893(n) if n>1. - Michael Somos, Apr 17 2015