A164368 Primes p with the property: if q is the smallest prime > p/2, then a prime exists between p and 2q.
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 109, 127, 137, 149, 151, 167, 179, 181, 191, 197, 227, 229, 233, 239, 241, 263, 269, 281, 283, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 521, 569, 571, 587, 593, 599, 601, 607
Offset: 1
Keywords
Examples
2 is in the sequence, since then q=2, and there is a prime 3 between 2 and 4. - _N. J. A. Sloane_, Oct 15 2009
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
- V. Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
- J. Sondow, Ramanujan Prime in MathWorld
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011 (see Section 5 Prime gaps).
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2 (see Section 5 Prime gaps).
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local q, k, p; k:= nextprime(`if`(n=1, 1, a(n-1))); do q:= nextprime(floor(k/2)); p:= nextprime(k); if p<2*q then break fi; k:= p od; k end: seq(a(n), n=1..55); # Alois P. Heinz, Aug 30 2011
-
Mathematica
Reap[Do[q=NextPrime[p/2]; If[PrimePi[2*q] != PrimePi[p], Sow[p]], {p, Prime[Range[100]]}]][[2, 1]] (* Second program: *) fQ[n_] := PrimePi[ 2NextPrime[n/2]] != PrimePi[n]; Select[ Prime@ Range@ 105, fQ]
-
PARI
is(n)=nextprime(n+1)<2*nextprime(n/2) && isprime(n) \\ Charles R Greathouse IV, Apr 24 2015
Formula
Extensions
Definition clarified and simplified by Jonathan Sondow, Oct 25 2011
Comments