cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164369 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326571, 1959300, 11755065, 70525980, 423129420, 2538617760, 15230754000, 91378809060, 548238566925, 3289225689750, 19734119944875, 118397314970550, 710339464409400, 4261770250642800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2017, modified Apr 25 2019 *)
    coxG[{7, 15, -5, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8)) \\ G. C. Greubel, Sep 17 2017, modified Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^7)/(1-6*x+20*x^7-15*x^8)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).
G.f.: (1+x)*(1-x^7)/(1 -6*x +20*x^7 -15*x^8). - G. C. Greubel, Apr 25 2019