cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A164518 Primes of the form A162143(k) + 2.

Original entry on oeis.org

11027, 65027, 74531, 119027, 184043, 308027, 314723, 370883, 423803, 603731, 783227, 804611, 815411, 915851, 938963, 1238771, 1279163, 1461683, 1490843, 1535123, 1550027, 1718723, 2556803, 2673227, 2812331, 3059003, 3493163
Offset: 1

Views

Author

Keywords

Comments

Primes of the form 2 + q^2*r^2*s^2 where q, r, and s are three distinct primes.

Examples

			a(1) = 11027 = A000040(1337) = A162143(7) + 2.
		

Crossrefs

Programs

  • Maple
    N:= 10^7: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N-2)/15))]):
    R:= NULL:
    for i from 1 to nops(P) do
      for j from 1 to i-1 while (3*P[i]*P[j])^2<=N-2 do
        for k from 1 to j-1 do
          p:= (P[i]*P[j]*P[k])^2+2;
          if p > N then break fi;
          if isprime(p) then R:= R, p fi
    od od od:
    sort([R]); # Robert Israel, Jun 05 2018
  • Mathematica
    f[n_]:=FactorInteger[n][[1,2]]==2&&Length[FactorInteger[n]]==3&&FactorInteger[n][[2, 2]]==2&&FactorInteger[n][[3,2]]==2; lst={};Do[p=Prime[n];If[f[p-2], AppendTo[lst,p]],{n,4,9!}];lst
    With[{nn=30},Take[Union[Select[Times@@(#^2)+2&/@Subsets[Prime[ Range[ nn]], {3}],PrimeQ]],nn]] (* Harvey P. Dale, Mar 14 2016 *)

Extensions

Edited by R. J. Mathar, Aug 21 2009

A164519 Primes p such that p+2 is the square of a product of 3 distinct primes.

Original entry on oeis.org

53359, 74527, 81223, 127447, 159199, 184039, 189223, 314719, 354023, 370879, 378223, 416023, 439567, 511223, 804607, 974167, 1046527, 1092023, 1177223, 1238767, 1535119, 1600223, 1718719, 2059223, 2082247, 2140367, 2223079
Offset: 1

Views

Author

Keywords

Comments

Primes of the form A162143(k)-2.

Examples

			53359 + 2 = 3^2*7^2*11^2. 74527 + 2 = 3^2*7^2*13^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=FactorInteger[n][[1,2]]==2&&Length[FactorInteger[n]]==3&&FactorInteger[n][[2, 2]]==2&&FactorInteger[n][[3,2]]==2; lst={};Do[p=Prime[n];If[f[p+2], AppendTo[lst,p]],{n,4,9!}];lst

Extensions

Definition rephrased by R. J. Mathar, Oct 21 2009

A164520 Primes p such that p-2 is the product of exactly 2 distinct cubes of primes.

Original entry on oeis.org

274627, 328511, 1860869, 2146691, 2924209, 9129331, 9938377, 10503461, 15438251, 24642173, 26730901, 28372627, 39651823, 61629877, 105823819, 125751503, 136590877, 151419439, 194104541, 426957779, 573856193
Offset: 1

Views

Author

Keywords

Examples

			274627 - 2 = 5^3*13^3, 328511 - 2 = 3^3*23^3,..
		

Crossrefs

Programs

  • Mathematica
    f3[n_]:=FactorInteger[n][[1,2]]==3&&Length[FactorInteger[n]]==2&&FactorInteger[n][[2,2]]==3; lst={};Do[p=Prime[n];If[f3[p-2],AppendTo[lst,p]],{n,4,4*9!}];lst
  • PARI
    forprime(p=3,1e9,if(ispower(p-2,3,&n)&&!issquare(n)&&bigomega(n)==2,print1(p",")))

Extensions

Program by Charles R Greathouse IV, Oct 12 2009

A164521 Primes of the form A162142(k) - 2.

Original entry on oeis.org

3373, 753569, 2146687, 3048623, 6539201, 8120599, 10218311, 17373977, 18609623, 19034161, 32461757, 44738873, 59776469, 69426529, 72511711, 77854481, 88121123, 116930167, 133432829, 299418307, 338608871, 413493623, 458314009, 679151437
Offset: 1

Views

Author

Keywords

Comments

Primes p such that p+2 is the cube of a squarefree semiprime, i.e., such that p+2 = q^3*r^3 where q and r are two distinct primes.

Examples

			3373 + 2 = 3375 = 3^3*5^3. 753569 + 1 = 753571 = 7^3*13^3.
		

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..floor((N+2)^(1/3)/3))]):
    R:= NULL:
    for i from 1 to nops(P) do
        for j from 1 to i-1 do
          p:= (P[i]*P[j])^3-2;
          if p > N then break fi;
          if isprime(p) then R:= R, p fi
    od od:
    sort([R]); # Robert Israel, Jun 05 2018
  • Mathematica
    f3[n_]:=FactorInteger[n][[1,2]]==3&&Length[FactorInteger[n]]==2&&FactorInteger[n][[2, 2]]==3; lst={};Do[p=Prime[n];If[f3[p+2],AppendTo[lst,p]],{n,4,4*9!}];  lst
    csfsQ[n_]:=Module[{c=Surd[n+2,3]},SquareFreeQ[c]&&PrimeOmega[c]==2]; Select[Prime[Range[353*10^5]],csfsQ] (* Harvey P. Dale, Jan 07 2018 *)

Extensions

Edited and examples corrected by R. J. Mathar, Aug 21 2009
Showing 1-4 of 4 results.