cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164518 Primes of the form A162143(k) + 2.

Original entry on oeis.org

11027, 65027, 74531, 119027, 184043, 308027, 314723, 370883, 423803, 603731, 783227, 804611, 815411, 915851, 938963, 1238771, 1279163, 1461683, 1490843, 1535123, 1550027, 1718723, 2556803, 2673227, 2812331, 3059003, 3493163
Offset: 1

Views

Author

Keywords

Comments

Primes of the form 2 + q^2*r^2*s^2 where q, r, and s are three distinct primes.

Examples

			a(1) = 11027 = A000040(1337) = A162143(7) + 2.
		

Crossrefs

Programs

  • Maple
    N:= 10^7: # to get all terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N-2)/15))]):
    R:= NULL:
    for i from 1 to nops(P) do
      for j from 1 to i-1 while (3*P[i]*P[j])^2<=N-2 do
        for k from 1 to j-1 do
          p:= (P[i]*P[j]*P[k])^2+2;
          if p > N then break fi;
          if isprime(p) then R:= R, p fi
    od od od:
    sort([R]); # Robert Israel, Jun 05 2018
  • Mathematica
    f[n_]:=FactorInteger[n][[1,2]]==2&&Length[FactorInteger[n]]==3&&FactorInteger[n][[2, 2]]==2&&FactorInteger[n][[3,2]]==2; lst={};Do[p=Prime[n];If[f[p-2], AppendTo[lst,p]],{n,4,9!}];lst
    With[{nn=30},Take[Union[Select[Times@@(#^2)+2&/@Subsets[Prime[ Range[ nn]], {3}],PrimeQ]],nn]] (* Harvey P. Dale, Mar 14 2016 *)

Extensions

Edited by R. J. Mathar, Aug 21 2009