A164518 Primes of the form A162143(k) + 2.
11027, 65027, 74531, 119027, 184043, 308027, 314723, 370883, 423803, 603731, 783227, 804611, 815411, 915851, 938963, 1238771, 1279163, 1461683, 1490843, 1535123, 1550027, 1718723, 2556803, 2673227, 2812331, 3059003, 3493163
Offset: 1
Keywords
Examples
a(1) = 11027 = A000040(1337) = A162143(7) + 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^7: # to get all terms <= N P:= select(isprime, [seq(i,i=3..floor(sqrt(N-2)/15))]): R:= NULL: for i from 1 to nops(P) do for j from 1 to i-1 while (3*P[i]*P[j])^2<=N-2 do for k from 1 to j-1 do p:= (P[i]*P[j]*P[k])^2+2; if p > N then break fi; if isprime(p) then R:= R, p fi od od od: sort([R]); # Robert Israel, Jun 05 2018
-
Mathematica
f[n_]:=FactorInteger[n][[1,2]]==2&&Length[FactorInteger[n]]==3&&FactorInteger[n][[2, 2]]==2&&FactorInteger[n][[3,2]]==2; lst={};Do[p=Prime[n];If[f[p-2], AppendTo[lst,p]],{n,4,9!}];lst With[{nn=30},Take[Union[Select[Times@@(#^2)+2&/@Subsets[Prime[ Range[ nn]], {3}],PrimeQ]],nn]] (* Harvey P. Dale, Mar 14 2016 *)
Extensions
Edited by R. J. Mathar, Aug 21 2009
Comments