A164521 Primes of the form A162142(k) - 2.
3373, 753569, 2146687, 3048623, 6539201, 8120599, 10218311, 17373977, 18609623, 19034161, 32461757, 44738873, 59776469, 69426529, 72511711, 77854481, 88121123, 116930167, 133432829, 299418307, 338608871, 413493623, 458314009, 679151437
Offset: 1
Keywords
Examples
3373 + 2 = 3375 = 3^3*5^3. 753569 + 1 = 753571 = 7^3*13^3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^10: # to get all terms <= N P:= select(isprime, [seq(i,i=3..floor((N+2)^(1/3)/3))]): R:= NULL: for i from 1 to nops(P) do for j from 1 to i-1 do p:= (P[i]*P[j])^3-2; if p > N then break fi; if isprime(p) then R:= R, p fi od od: sort([R]); # Robert Israel, Jun 05 2018
-
Mathematica
f3[n_]:=FactorInteger[n][[1,2]]==3&&Length[FactorInteger[n]]==2&&FactorInteger[n][[2, 2]]==3; lst={};Do[p=Prime[n];If[f3[p+2],AppendTo[lst,p]],{n,4,4*9!}]; lst csfsQ[n_]:=Module[{c=Surd[n+2,3]},SquareFreeQ[c]&&PrimeOmega[c]==2]; Select[Prime[Range[353*10^5]],csfsQ] (* Harvey P. Dale, Jan 07 2018 *)
Extensions
Edited and examples corrected by R. J. Mathar, Aug 21 2009
Comments