A164540 a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 14.
1, 14, 60, 296, 1424, 6880, 33216, 160384, 774400, 3739136, 18054144, 87173120, 420909056, 2032328704, 9812951040, 47381118976, 228776280064, 1104629596160, 5333623504896, 25753012404224, 124346543636480, 600398224162816
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..164
- Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (4, 4).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+3*r)*(2+2*r)^n+(1-3*r)*(2-2*r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009 -
Mathematica
LinearRecurrence[{4,4},{1,14},30] (* Harvey P. Dale, Jul 18 2024 *)
Formula
a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 14.
G.f.: (1+10*x)/(1-4*x-4*x^2).
a(n) = ((1+3*sqrt(2))*(2+2*sqrt(2))^n + (1-3*sqrt(2))*(2-2*sqrt(2))^n)/2.
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 20 2009
Comments