cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164548 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314365, 47828880, 430456320, 3874074480, 34866378720, 313794784080, 2824129437120, 25416952359660, 228750658083360, 2058738704511840, 18528493377756960, 166755045745830240
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    Coefficients(R!( (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8) )); // G. C. Greubel, Jul 17 2021
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8), {t,0,30}], t] (* or *)
    coxG[{7, 36, -8, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 17 2021 *)
  • Sage
    def A168823_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8) ).list()
    A168823_list(30) # G. C. Greubel, Jul 17 2021

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
G.f.: (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8). - G. C. Greubel, Jul 17 2021