cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164554 Ramanujan primes A104272(n) for which A104272(n) = A080359(n).

Original entry on oeis.org

2, 71, 101, 181, 239, 241, 269, 349, 373, 409, 419, 433, 439, 491, 593, 599, 601, 607, 647, 653, 659, 823, 827, 857, 947, 1021, 1031, 1061, 1063, 1091, 1103, 1301, 1427, 1429, 1447, 1451, 1489, 1553, 1559, 1567, 1601, 1607, 1609, 1789, 1867, 1871, 1913, 1999, 2003
Offset: 1

Views

Author

Vladimir Shevelev, Aug 15 2009

Keywords

Comments

For every n>=1, A104272(n) >= A080359(n), and the sequence shows where the inequality becomes an equality.
Let prime(m) < a(n)/2 < prime(m+1); then there exist primes p
For example, a(2) = 71, 31 < a(2)/2 < 37 and intervals (62,71), (71,74) contain the primes p = 67 and q = 73 respectively.
Let us call a prime p compatible with another prime q, if the intervals (p/2,q/2) and (p,q], if q>p, (or intervals (q/2,p/2) and (q,p], if qVladimir Shevelev, Apr 25 2012]

Examples

			a(2)=71, such that 31<71/2<37, and we see that p=67 is in interval (62, 71) and q=73 is in interval (71, 74).
		

Programs

  • Mathematica
    nn = 200; t = Table[0, {nn+1}]; s = 0;
    Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s <= nn && t[[s+1]] == 0, t[[s+1]] = k], {k, Prime[3nn]}
    ];
    A080359 = Rest[t];
    R = Table[0, {nn}]; s = 0;
    Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s+1]] = k], {k, Prime[3nn]}
    ];
    A104272 = R+1;
    Intersection[A104272, A080359] (* Jean-François Alcover, Oct 28 2018, after T. D. Noe in A104272 *)

Formula

All solutions of the equation A104272(x)=A080359(x) are x=pi(a(n))-pi(a(n)/2). - Vladimir Shevelev, Apr 25 2012

Extensions

Terms beyond 659 from R. J. Mathar, Dec 17 2009