A164578 Integers of the form (k+1)*(2k+1)/12.
10, 23, 65, 94, 168, 213, 319, 380, 518, 595, 765, 858, 1060, 1169, 1403, 1528, 1794, 1935, 2233, 2390, 2720, 2893, 3255, 3444, 3838, 4043, 4469, 4690, 5148, 5385, 5875, 6128, 6650, 6919, 7473, 7758, 8344, 8645, 9263, 9580, 10230, 10563, 11245, 11594
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
s=0;lst={};Do[a=(s+=(n^2)/2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,2*6!}];lst Select[Table[((n+1)(2n+1))/12,{n,300}],IntegerQ] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{10,23,65,94,168},60] (* Harvey P. Dale, Jun 14 2017 *)
-
PARI
Vec(x*(10+13*x+22*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016
Formula
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5). G.f. x*(-10-13*x-22*x^2-3*x^3) / ((1+x)^2*(x-1)^3). - R. J. Mathar, Jan 25 2011
From Colin Barker, Jan 26 2016: (Start)
a(n) = (24*n^2+6*n-(-1)^n*(8*n+1)+1)/4.
a(n) = (12*n^2-n)/2 for n even.
a(n) = (12*n^2+7*n+1)/2 for n odd.
(End)
Comments