A164582 a(n) = 5*a(n - 1) - a(n - 2), with n>2, a(1)=2, a(2)=3.
2, 3, 13, 62, 297, 1423, 6818, 32667, 156517, 749918, 3593073, 17215447, 82484162, 395205363, 1893542653, 9072507902, 43468996857, 208272476383, 997893385058, 4781194448907, 22908078859477, 109759199848478, 525887920382913, 2519680402066087
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-1).
Programs
-
Magma
[n le 2 select n+1 else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 12 2013
-
Mathematica
CoefficientList[Series[(2 - 7 x) / (1 - 5 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 12 2013 *) LinearRecurrence[{5,-1},{2,3},30] (* Harvey P. Dale, Apr 06 2016 *)
-
PARI
Vec(x*(2 - 7*x) / (1 - 5*x + x^2) + O(x^30)) \\ Colin Barker, Nov 08 2017
Formula
G.f.: x*(2-7*x) / (1-5*x+x^2).
a(n) = (2^(-1-n)*((5+sqrt(21))^n*(-31+7*sqrt(21)) + (5-sqrt(21))^n*(31+7*sqrt(21)))) / sqrt(21). - Colin Barker, Nov 08 2017
a(n) = (a(n-1)^2 + 17)/a(n-2). - Klaus Purath, Aug 30 2020
Extensions
Extended by R. J. Mathar, Aug 19 2009
Comments