cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164587 a(n) = 2*a(n - 2) for n > 2; a(1) = 1, a(2) = 8.

Original entry on oeis.org

1, 8, 2, 16, 4, 32, 8, 64, 16, 128, 32, 256, 64, 512, 128, 1024, 256, 2048, 512, 4096, 1024, 8192, 2048, 16384, 4096, 32768, 8192, 65536, 16384, 131072, 32768, 262144, 65536, 524288, 131072, 1048576, 262144, 2097152, 524288, 4194304, 1048576
Offset: 1

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Interleaving of A000079 and A000079 without initial terms 1, 2, 4.
Binomial transform is A048696. Second binomial transform is A164298.

Crossrefs

Equals A112032 without initial term 4.
Cf. A000079 (powers of 2), A048696, A164298.

Programs

  • Magma
    [ n le 2 select 7*n-6 else 2*Self(n-2): n in [1..41] ];
    
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 10*x + 17*x^2), {x,0,50}], x] (* G. C. Greubel, Aug 12 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(1+8*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 12 2017

Formula

a(n) = (5 + 3*(-1)^n)*2^((2*n -5 +(-1)^n)/4).
G.f.: x*(1+8*x)/(1-2*x^2).
E.g.f.: 4*cosh(sqrt(2)*x) + (1/sqrt(2))*sinh(sqrt(2)*x) - 4. - G. C. Greubel, Aug 12 2017