A164598 a(n) = 12*a(n-1) - 34*a(n-2), for n > 1, with a(0) = 1, a(1) = 14.
1, 14, 134, 1132, 9028, 69848, 531224, 3999856, 29936656, 223244768, 1661090912, 12342768832, 91636134976, 679979479424, 5044125163904, 37410199666432, 277422140424448, 2057118896434688, 15253073982785024, 113094845314640896
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (12,-34).
Crossrefs
Programs
-
Magma
[ n le 2 select 13*n-12 else 12*Self(n-1)-34*Self(n-2): n in [1..30] ];
-
Maple
m:=30; S:=series( (1+2*x)/(1-12*x+34*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
-
Mathematica
LinearRecurrence[{12,-34}, {1,14}, 30] (* G. C. Greubel, Aug 11 2017 *)
-
PARI
my(x='x+O('x^30)); Vec((1+2*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 11 2017
-
Sage
[( (1+2*x)/(1-12*x+34*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 11 2021
Formula
a(n) = ((1+4*sqrt(2))*(6+sqrt(2))^n + (1-4*sqrt(2))*(6-sqrt(2))^n)/2.
G.f.: (1+2*x)/(1-12*x+34*x^2).
E.g.f.: exp(6*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*5^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)
Comments